Publications by authors named "Tranca D"

Infectious diseases are acknowledged as one of the leading causes of death worldwide. Statistics show that the annual death toll caused by bacterial infections has reached 14 million, most of which are caused by drug-resistant strains. Bacterial antibiotic resistance is currently regarded as a compelling problem with dire consequences, which motivates the urgent identification of alternative ways of fighting bacteria.

View Article and Find Full Text PDF

N-, C-, O-, S-coordinated single-metal-sites (SMSs) have garnered significant attention due to the potential for significantly enhanced catalytic capabilities resulting from charge redistribution. However, significant challenges persist in the precise design of well-defined such SMSs, and the fundamental comprehension has long been impeded in case-by-case reports using carbon materials as investigation targets. In this work, the well-defined molecular catalysts with N C -anchored SMSs, i.

View Article and Find Full Text PDF

Ammonia is a key chemical feedstock worldwide. Compared with the well-known Haber-Bosch method, electrocatalytic nitrogen reduction reaction (ENRR) can eventually consume less energy and have less CO emission. In this study, a plasma-enhanced chemical vapor deposition method is used to anchor transition metal element onto 2D conductive material.

View Article and Find Full Text PDF

Second harmonic generation microscopy (SHG) is generally acknowledged as a powerful tool for the label-free three-dimensional visualization of tissues and advanced materials, with one of its most popular applications being collagen imaging. Despite the great need, progress in super-resolved SHG imaging lags behind the developments reported over the past years in fluorescence-based optical nanoscopy. In this work, we demonstrate super-resolved re-scan SHG, qualitatively and quantitatively showing on collagenous tissues the available resolution advantage over the diffraction limit.

View Article and Find Full Text PDF

Second harmonic generation (SHG) microscopy is acknowledged as an established imaging technique capable to provide information on the collagen architecture in tissues that is highly valuable for the diagnostics of various pathologies. The polarization-resolved extension of SHG (PSHG) microscopy, together with associated image processing methods, retrieves extensive image sets under different input polarization settings, which are not fully exploited in clinical settings. To facilitate this, we introduce PSHG-TISS, a collection of PSHG images, accompanied by additional computationally generated images which can be used to complement the subjective qualitative analysis of SHG images.

View Article and Find Full Text PDF

Covalent triazine frameworks (CTFs) are among the most valuable frameworks owing to many fantastic properties. However, molten salt-involved preparation of CTFs at 400-600 °C causes debate on whether CTFs represent organic frameworks or carbon. Herein, new CTFs based on the 1,3-dicyanoazulene monomer (CTF-Azs) are synthesized using molten ZnCl at 400-600 °C.

View Article and Find Full Text PDF
Article Synopsis
  • Scattering-type scanning near-field optical microscopy (s-SNOM) is a new technique that allows for detailed examination of advanced materials and biological samples at the nanoscale without needing labels.
  • This study focuses on polymer-coated gold nanoparticles, specifically how their core-shell structure influences applications in biomedicine, especially under specific laser excitation.
  • The results indicate that while bare and lightly-coated gold nanoparticles show clear optical signals, thicker coatings diminish these signals, potentially impacting future research in nanomedicine and nanotechnology.
View Article and Find Full Text PDF

The electrochemical reduction of carbon dioxide (CO ) based on molecular catalysts has attracted more attention, owing to their well-defined active sites and rational structural design. Metal porphyrins (PorMs) have the extended π-conjugated backbone with different transition metals, endowing them with unique CO reduction properties. However, few works focus on the investigation of symmetric architecture of PorMs as well as their aggregation behavior to CO reduction.

View Article and Find Full Text PDF

The electronic properties of two-dimensional semiconductors can be strongly modulated by interfacing them with atomically precise self-assembled molecular lattices, yielding hybrid van der Waals heterostructures (vdWHs). While proof-of-concepts exploited molecular assemblies held together by lateral unspecific van der Waals interactions, the use of 2D supramolecular networks relying on specific non-covalent forces is still unexplored. Herein, prototypical hydrogen-bonded 2D networks of cyanuric acid (CA) and melamine (M) are self-assembled onto MoS and WSe forming hybrid organic/inorganic vdWHs.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have been extensively investigated during the last two decades. More recently, a family of hybrid materials (, MOF@COF) has emerged as particularly appealing for gas separation and storage, catalysis, sensing, and drug delivery. MOF@COF hybrids combine the unique characteristics of both MOF and COF components and exhibit peculiar properties including high porosity and large surface area.

View Article and Find Full Text PDF

Developing effective electrocatalysts for the oxygen reduction reaction is of great significance for clean and renewable energy technologies, such as metal-air batteries and fuel cells. Defect engineering is the central focus of this field because the overall catalytic performance crucially depends on highly active defects. For the ORR, topological defects have been proven to have a positive effect.

View Article and Find Full Text PDF

Among various organic cathode materials, C═O group-enriched structures have attracted wide attention worldwide. However, small organic molecules have long suffered from dissolving in electrolytes during charge-discharge cycles. π-Conjugated microporous polymers (CMPs) become one solution to address this issue.

View Article and Find Full Text PDF

Microsupercapacitors (MSCs) have drawn great attention for use as miniaturized electrochemical energy storage devices in portable, wearable, as well as implantable electronics. Many materials have been developed as electrodes for MSCs. However, the thin-film fabrication for most of these materials involves multistep operations, including filtration, spray coating, and sputtering.

View Article and Find Full Text PDF

Coordination polymer frameworks (CPFs) have broad applications due to their excellent features, including stable structure, intrinsic porosity, and others. However, preparation of thin-film CPFs for energy storage and conversion remains a challenge because of poor compatibility between conductive substrates and CPFs and crucial conditions for thin-film preparation. In this work, a CPF film was prepared by the coordination of the anisotropic four-armed ligand and Cu at the liquid-liquid interface.

View Article and Find Full Text PDF

Background: In recent years, a variety of imaging techniques operating at nanoscale resolution have been reported. These techniques have the potential to enrich our understanding of bacterial species relevant to human health, such as antibiotic-resistant pathogens. However, owing to the novelty of these techniques, their use is still confined to addressing very particular applications, and their availability is limited owing to associated costs and required expertise.

View Article and Find Full Text PDF

Heterostructures exhibit considerable potential in the field of energy conversion due to their excellent interfacial charge states in tuning the electronic properties of different components to promote catalytic activity. However, the rational preparation of heterostructures with highly active heterosurfaces remains a challenge because of the difficulty in component tuning, morphology control, and active site determination. Herein, a novel heterostructure based on a combination of RuMo nanoalloys and hexagonal N-doped carbon nanosheets is designed and synthesized.

View Article and Find Full Text PDF

Super-resolution microscopy techniques can provide answers to still pending questions on prokaryotic organisms but are yet to be used at their full potential for this purpose. To address this, we evaluate the ability of the rhodamine-like KK114 dye to label various types of bacteria, to enable imaging of fine structural details with stimulated emission depletion microscopy (STED). We assessed fluorescent labeling with KK114 for eleven Gram-positive and Gram-negative bacterial species and observed that this contrast agent binds to their cell membranes.

View Article and Find Full Text PDF

Despite intense research on high entropy films, the mechanism of film growth and the influence of key factors remain incompletely understood. In this study, high entropy films consisting of five elements (FeCoNiCrAl) with columnar and nanometer-scale grains were prepared by magnetron sputtering. The high entropy film growth mechanism, including the formation of the amorphous domain, equiaxial nanocrystalline structure and columnar crystal was clarified by analyzing the microstructure in detail.

View Article and Find Full Text PDF

Quantitative second harmonic generation microscopy was used to investigate collagen organization in the fibrillar capsules of human benign and malignant thyroid nodules. We demonstrate that the combination of texture analysis and second harmonic generation images of collagen can be used to differentiate between capsules surrounding the thyroid follicular adenoma and papillary carcinoma nodules. Our findings indicate that second harmonic generation microscopy can provide quantitative information about the collagenous capsule surrounding both the thyroid and thyroid nodules, which may complement traditional histopathological examination.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have so far been highlighted for their potential roles in catalysis, gas storage and separation. However, the realization of high electrical conductivity (>10 S cm) and magnetic ordering in MOFs will afford them new functions for spintronics, which remains relatively unexplored. Here, we demonstrate the synthesis of a two-dimensional MOF by solvothermal methods using perthiolated coronene as a ligand and planar iron-bis(dithiolene) as linkages enabling a full π-d conjugation.

View Article and Find Full Text PDF

Apertureless scanning near-field optical microscopy (ASNOM) has attracted considerable interest over the past years as a result of its valuable contrast mechanisms and capabilities for optical resolutions in the nanoscale range. However, at this moment the intersections between ASNOM and the realm of bioimaging are scarce, mainly due to data interpretation difficulties linked to the limited body of work performed so far in this field and hence the reduced volume of supporting information. We propose an imaging approach that holds significant potential for alleviating this issue, consisting of correlative imaging of biological specimens using a multimodal system that incorporates ASNOM and confocal laser scanning microscopy (CLSM), which allows placing near-field data into a well understood context of anatomical relevance.

View Article and Find Full Text PDF

We present a novel method for nanoscale reconstruction of complex refractive index by using scattering-type Scanning Near-field Optical Microscopy (s-SNOM). Our method relies on correlating s-SNOM experimental image data with computational data obtained through simulation of the classical oscillating point-dipole model. This results in assigning a certain dielectric function for every pixel of the s-SNOM images, which further results in nanoscale mapping of the refractive index.

View Article and Find Full Text PDF

The fundamental understanding of electrocatalytic active sites for hydrogen evolution reaction (HER) is significantly important for the development of metal complex involved carbon electrocatalysts with low kinetic barrier. Here, the MS N (M = Fe, Co, and Ni, x/y are 2/2, 0/4, and 4/0, respectively) active centers are immobilized into ladder-type, highly crystalline coordination polymers as model carbon-rich electrocatalysts for H generation in acid solution. The electrocatalytic HER tests reveal that the coordination of metal, sulfur, and nitrogen synergistically facilitates the hydrogen ad-/desorption on MS N catalysts, leading to enhanced HER kinetics.

View Article and Find Full Text PDF

Although silicon carbide is a highly promising crystalline material for a wide range of electronic devices, extended and point defects which perturb the lattice periodicity hold deep implications with respect to device reliability. There is thus a great need for developing new methods that can detect silicon carbide defects which are detrimental to device functionality. Our experiment demonstrates that polarization-resolved second harmonic generation microscopy can extend the efficiency of the "optical signature" concept as an all-optical rapid and non-destructive set of investigation methods for the differentiation between hexagonal and cubic stacking faults in silicon carbide.

View Article and Find Full Text PDF

Molybdenum carbide (MoC) based catalysts were found to be one of the most promising electrocatalysts for hydrogen evolution reaction (HER) in acid media in comparison with Pt-based catalysts but were seldom investigated in alkaline media, probably due to the limited active sites, poor conductivity, and high energy barrier for water dissociation. In this work, MoC-embedded nitrogen-doped porous carbon nanosheets (MoC@2D-NPCs) were successfully achieved with the help of a convenient interfacial strategy. As a HER electrocatalyst in alkaline solution, MoC@2D-NPC exhibited an extremely low onset potential of ∼0 mV and a current density of 10 mA cm at an overpotential of ∼45 mV, which is much lower than the values of most reported HER electrocatalysts and comparable to the noble metal catalyst Pt.

View Article and Find Full Text PDF