Flexible wearable sensors are integral in diverse applications, particularly in healthcare and human-computer interaction systems. This paper introduces a resistive stretch sensor crafted from shape memory polymers (SMP) blended with carbon nanotubes (CNTs) and coated with silver paste. Initially, the sensor's characteristics underwent evaluation using a Universal Testing Machine (UTM) and an LCR meter.
View Article and Find Full Text PDFFuture wearable electronic gadgets offer great potential for using stretchable, strain-sensitive materials to instantly detect human motion and record physiological information. This paper presens a strain/compress sensor made from a Shape memory alloy (SMA) coil spring covered with silver pastes and the composite of carbon nanotubes and Shape memory polymer (SMP). The combination of the shape memory materials that expand or contract automatically by temperature improved the mechanics of the sensor.
View Article and Find Full Text PDFThis study presents a respiration sensor that is dependent on a parallel capacitor, including connection lines and electrodes embroidered on textiles. First, characterizations of the respiration capacitor using a silver thread, including a combination of porous Eco-flex simulating air in the lungs due to respiration, were evaluated using an LCR meter. Second, the effects of air gaps on the detection of respiration motions according to the change in electrode distance under pressure were presented.
View Article and Find Full Text PDFAmong wearable e-textiles, conductive textile yarns are of particular interest because they can be used as flexible and wearable sensors without affecting the usual properties and comfort of the textiles. Firstly, this study proposed three types of piezoresistive textile sensors, namely, single-layer, double-layer, and quadruple-layer, to be made by the Jacquard processing method. This method enables the programmable design of the sensor’s structure and customizes the sensor’s sensitivity to work more efficiently in personalized applications.
View Article and Find Full Text PDFMany studies have been conducted to develop electronic skin (e-skin) and flexible wearable textiles which transform into actual “skin”, using different approaches. Moreover, many reports have investigated self-healing materials, multifunctional sensors, etc. This study presents a systematic approach to embroidery pressure sensors dependent on interdigitated capacitors (IDCs), for applications surrounding intelligent wearable devices, robots, and e-skins.
View Article and Find Full Text PDF