Environ Sci Pollut Res Int
September 2023
Ensemble learning techniques have shown promise in improving the accuracy of landslide models by combining multiple models to achieve better predictive performance. In this study, several ensemble methods (Dagging, Bagging, and Decorate) and a radial basis function classifier (RBFC) were combined to predict landslide susceptibility in the Trung Khanh district of the Cao Bang Province, Vietnam. The ensemble models were developed using a geospatial database containing 45 historical landslides (1074 points) and thirteen influencing variables characterizing the topography, geology, land use/cover, and human activities of the study area.
View Article and Find Full Text PDFGroundwater is one of the major valuable water resources for the use of communities, agriculture, and industries. In the present study, we have developed three novel hybrid artificial intelligence (AI) models which is a combination of modified RealAdaBoost (MRAB), bagging (BA), and rotation forest (RF) ensembles with functional tree (FT) base classifier for the groundwater potential mapping (GPM) in the basaltic terrain at DakLak province, Highland Centre, Vietnam. Based on the literature survey, these proposed hybrid AI models are new and have not been used in the GPM of an area.
View Article and Find Full Text PDFThe main aim of this study is to assess groundwater potential of the DakNong province, Vietnam, using an advanced ensemble machine learning model (RABANN) that integrates Artificial Neural Networks (ANN) with RealAdaBoost (RAB) ensemble technique. For this study, twelve conditioning factors and wells yield data was used to create the training and testing datasets for the development and validation of the ensemble RABANN model. Area Under the Receiver Operating Characteristic (ROC) curve (AUC) and several statistical performance measures were used to validate and compare performance of the ensemble RABANN model with the single ANN model.
View Article and Find Full Text PDF