Hydrogen's contribution to a sustainable energy transformation requires intermittent storage technologies, e.g., underground hydrogen storage (UHS).
View Article and Find Full Text PDFThe aggregation of clay particles is an everyday phenomenon of scientific and industrial relevance. However, it is a complex multiscale process that depends delicately on the nature of the particle-particle and particle-solvent interactions. Toward understanding how to control such phenomena, a multiscale computational approach is developed, building from molecular simulations conducted at atomic resolution to calculate the potential of mean force (PMF) profiles in both pure and saline water environments.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
May 2022
The aggregation of clay particles in aqueous solution is a ubiquitous everyday process of broad environmental and technological importance. However, it is poorly understood at the all-important atomistic level since it depends on a complex and dynamic interplay of solvent-mediated electrostatic, hydrogen bonding, and dispersion interactions. With this in mind, we have performed an extensive set of classical molecular dynamics simulations (included enhanced sampling simulations) on the interactions between model kaolinite nanoparticles in pure and salty water.
View Article and Find Full Text PDFUnderstanding the wetting properties of reservoir rocks can be of great benefit for advanced applications such as the effective trapping and geological storage of CO. Despite their importance, not all mechanisms responsible for wetting mineral surfaces in subsurface environments are well understood. Factors such as temperature, pressure and salinity are often studied, achieving results with little unanimity; other possible factors are left somewhat unexplored.
View Article and Find Full Text PDFHydrocarbons confined in porous media find applications in a wide variety of industries and therefore their diffusive behavior is widely studied. Most of the porous media found in natural environments are laden with water, which might affect the confined hydrocarbons. To quantify the effect of hydration, we report here a combined quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulation study on the dynamics of propane confined in the 1.
View Article and Find Full Text PDFDespite the multiple length and time scales over which fluid-mineral interactions occur, interfacial phenomena control the exchange of matter and impact the nature of multiphase flow, as well as the reactivity of C-O-H fluids in geologic systems. In general, the properties of confined fluids, and their influence on porous geologic phenomena are much less well understood compared to those of bulk fluids. We used equilibrium molecular dynamics simulations to study fluid systems composed of propane and water, at different compositions, confined within cylindrical pores of diameter ∼16 Å carved out of amorphous silica.
View Article and Find Full Text PDF