WHO declared the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus as a global pandemic (coronavirus disease 2019 (COVID-19)) in March 2020. Molnupiravir (MPV) is an oral antiviral drug that received use authorization for mild to moderate COVID-19 treatment in adults. However, the global and national drug testing and research of MPV is still difficult due to lack of standards and validated procedures.
View Article and Find Full Text PDFDiabetes mellitus remains a major global health issue, and great attention is directed at natural therapeutics. This systematic review aimed to assess the potential of flavonoids as antidiabetic agents by investigating their inhibitory effects on α-glucosidase and α-amylase, two key enzymes involved in starch digestion. Six scientific databases (PubMed, Virtual Health Library, EMBASE, SCOPUS, Web of Science, and WHO Global Index Medicus) were searched until August 21, 2022, for in vitro studies reporting IC values of purified flavonoids on α-amylase and α-glucosidase, along with corresponding data for acarbose as a positive control.
View Article and Find Full Text PDFLichens produce secondary metabolites that have many pharmaceutical activities such as antimicrobial, antioxidant, antiviral, anticancer, antigenotoxic, anti-inflammatory, analgesic and antipyretic activities. However, there is limited research on their efflux pump inhibitory activities. Twelve phytochemicals were isolated from , and their activity of AcrAB-TolC efflux pump inhibition was evaluated.
View Article and Find Full Text PDFAurones are a minor subgroup of flavonoids. Unlike other subgroups such as chalcones, flavones, and isoflavones, aurones have not been extensively explored as pancreatic lipase inhibitors. In this work, we studied the pancreatic lipase inhibitory potency of synthetic aurone derivatives.
View Article and Find Full Text PDFDiabetes mellitus is one of the top ten causes of death worldwide, accounting for 6.7 million deaths in 2021, and is one of the most rapidly growing global health emergencies of this century. Although several classes of therapeutic drugs have been invented and applied in clinical practice, diabetes continues to pose a serious and growing threat to public health and places a tremendous burden on those affected and their families.
View Article and Find Full Text PDFDiabetes mellitus is a chronic metabolic disease relating to steady hyperglycemia resulting from the impairment of the endocrine and non-endocrine systems. Many new drugs having varied targets were discovered to treat this disease, especially type 2 diabetes. Among those, α-glucosidase inhibitors showed their effects by preventing the digestion of carbohydrates through their inhibition against α-amylase and α-glucosidase.
View Article and Find Full Text PDFAcrAB-TolC tripartite efflux pump, which belongs to the RND superfamily, is a main multi-drug efflux system of () because of the broad resistance on various antibiotics. With the discovering of efflux pump inhibitors (EPIs), a combination between these and antibiotics is one of the most promising therapies. Therefore, building a virtual screening model with prediction capacities for the efflux pump inhibitory activities of candidates from DrugBank and ZINC15 dataset, is one of the key goals of this project.
View Article and Find Full Text PDFIL(interleukin)-6 is a multifunctional cytokine crucial for immunological, hematopoiesis, inflammation, and bone metabolism. Strikingly, IL-6 has been shown to significantly contribute to the initiation of cytokine storm-an acute systemic inflammatory syndrome in Covid-19 patients. Recent study has showed that blocking the IL-6 signaling pathway with an anti-IL-6 receptor monoclonal antibody (mAb) can reduce the severity of COVID-19 symptoms and enhance patient survival.
View Article and Find Full Text PDFThe World Health Organization declared monkeypox a global public health emergency on 23 July 2022. This disease was caused by the monkeypox virus (MPXV), which was first identified in 1958 in Denmark. The MPXV is a member of the Poxviridae family, the Chordopoxvirinae subfamily, and the genus Orthopoxvirus, which share high similarities with the vaccinia virus (the virus used to produce the smallpox vaccine).
View Article and Find Full Text PDFUnlabelled: The main protease 3CL is one of the potential targets against coronavirus. Inhibiting this enzyme leads to the interruption of viral replication. Chalcone and its derivatives were reported to possess the ability to bind to 3CL protease in the binding pocket.
View Article and Find Full Text PDFInterleukin 6 (IL-6) is a cytokine with various biological functions in immune regulation, hematopoiesis, and inflammation. Elevated IL-6 levels have been identified in several severe disorders such as sepsis, acute respiratory distress syndrome (ARDS), and most recently, COVID-19. The biological activity of IL-6 relies on interactions with its specific receptor, IL-6Rα, including the membrane-bound IL-6 receptor (mIL-6R) and the soluble IL-6 receptor (sIL-6R).
View Article and Find Full Text PDFThe human P-glycoprotein (P-gp) and the NorA transporter are the major culprits of multidrug resistance observed in various bacterial strains and cancer cell lines, by extruding drug molecules out of the targeted cells, leading to treatment failures in clinical settings. Inhibiting the activity of these efflux pumps has been a well-known strategy of drug design studies in this regard. In this manuscript, our earlier published machine learning models and homology structures of P-gp and NorA were utilized to screen a chemolibrary of 95 in-house chalcone derivatives, identifying two hit compounds, namely, F88 and F90, as potential modulators of both transporters, whose activity on strains overexpressing NorA and resistant to ciprofloxacin was subsequently confirmed.
View Article and Find Full Text PDFThe interleukin-1 receptor like ST2 has emerged as a potential drug discovery target since it was identified as the receptor of the novel cytokine IL-33, which is involved in many inflammatory and autoimmune diseases. For the treatment of such IL-33-related disorders, efforts have been made to discover molecules that can inhibit the protein-protein interactions (PPIs) between IL-33 and ST2, but to date no drug has been approved. Although several anti-ST2 antibodies have entered clinical trials, the exploration of small molecular inhibitors is highly sought-after because of its advantages in terms of oral bioavailability and manufacturing cost.
View Article and Find Full Text PDFABCG2 is an ABC membrane protein reverse transport pump, which removes toxic substances such as medicines out of cells. As a result, drug bioavailability is an unexpected change and negatively influences the ADMET (absorption, distribution, metabolism, excretion, and toxicity), leading to multi-drug resistance (MDR). Currently, in spite of promising studies, screening for ABCG2 inhibitors showed modest results.
View Article and Find Full Text PDFInhibition of human pancreatic lipase, a crucial enzyme in dietary fat digestion and absorption, is a potent therapeutic approach for obesity treatment. In this study, human pancreatic lipase inhibitory activity of aurone derivatives was explored by molecular modeling approaches. The target protein was human pancreatic lipase (PDB ID: 1LPB).
View Article and Find Full Text PDFAcetylcholinesterase (AChE) and β-secretase (BACE-1) have become attractive therapeutic targets for Alzheimer's disease (AD). Flavones are flavonoid derivatives with various bioactive effects, including AChE and BACE-1 inhibition. In the present work, a series of 14 flavone derivatives was synthesized in relatively high yields (35-85%).
View Article and Find Full Text PDFAcetylcholinesterase (AChE) and beta-secretase (BACE-1) are two attractive targets in the discovery of novel substances that could control multiple aspects of Alzheimer's disease (AD). Chalcones are the flavonoid derivatives with diverse bioactivities, including AChE and BACE-1 inhibition. In this study, a series of -substituted-4-phenothiazine-chalcones was synthesized and tested for AChE and BACE-1 inhibitory activities.
View Article and Find Full Text PDFAcetylcholinesterase (AChE) and beta-secretase (BACE-1) are the two crucial enzymes involved in the pathology of Alzheimer's disease. The former is responsible for many defects in cholinergic signaling pathway and the latter is the primary enzyme in the biosynthesis of beta-amyloid as the main component of the amyloid plaques. These both abnormalities are found in the brains of Alzheimer's patients.
View Article and Find Full Text PDFThe overexpression of ABCC2/MRP2, an ATP-binding cassette transporter, contributes to multidrug resistance in cancer cells. In this study, a quantitative structure-activity relationship (QSAR) analysis on ABCC2 inhibitors has been carried out, aiming to establish a computational prediction model for ABCC2 modulators. Seven classification models and two regression models were built by SONNIA 4.
View Article and Find Full Text PDFThe human P-glycoprotein (P-gp) efflux pump is of great interest for medicinal chemists because of its important role in multidrug resistance (MDR). Because of the high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of this transmembrane protein, ligand-based, and structure-based approaches which were machine learning, homology modeling, and molecular docking were combined for this study. In ligand-based approach, individual two-dimensional quantitative structure-activity relationship models were developed using different machine learning algorithms and subsequently combined into the Ensemble model which showed good performance on both the diverse training set and the validation sets.
View Article and Find Full Text PDFChemically diverse heterocyclic chalcones were prepared and evaluated for cytotoxicity, aiming to push forward potency and selectivity. They were tested against rhabdomyosarcoma (RMS) and noncancerous cell line (LLC-PK1). The influence of heteroaryl patterns on rings A and B was studied.
View Article and Find Full Text PDFBased upon molecular docking, this study aimed to find notable in silico neuraminidase 9 (NA9) point mutations of the avian influenza A H7N9 virus that possess a Zanamivir resistant property and to determine the lead compound capable of inhibiting these NA9 mutations. Seven amino acids (key residues) at the binding site of neuraminidase 9 responsible for Zanamivir-NA9 direct interactions were identified and 72 commonly occurring mutant NA9 versions were created using the Sybyl-X 2.0 software.
View Article and Find Full Text PDFNorA is a member of the Major Facilitator Superfamily (MFS) drug efflux pumps that have been shown to mediate antibiotic resistance in Staphylococcus aureus (SA). In this study, QSAR analysis, virtual screening and molecular docking were implemented in an effort to discover novel SA NorA efflux pump inhibitors. Originally, a set of 47 structurally diverse compounds compiled from the literature was used to develop linear QSAR models and another set of 15 different compounds were chosen for extra validation.
View Article and Find Full Text PDFThe pharmacophore modeling in modern drug research has been applied for both bioactivity profiling and early stage of risk assessment of potential side effects and toxicity due to interactions of drug candidates with antitargets namely P-glycoprotein, hERG, cytochrome P450 and pregnane X-receptor. In this article, an existing state concerning with pharmacophore modeling applied for promiscuous proteins in drug research were updated and reviewed. In an attempt to create new safe medicines faster, the partial overlap of substrate properties of hERG, P-glycoprotein, pregnane X-receptor and cytochrome P450 has to be considered and drug safety has to be dealt on a system level on the off-targets.
View Article and Find Full Text PDFA series of simple heterocyclic chalcone analogues have been synthesized by Claisen Schmidt condensation reactions between substituted benzaldehydes and heteroaryl methyl ketones and evaluated for their antibacterial activity. The structures of the synthesized chalcones were established by IR and ¹H-NMR analysis. The biological data shows that compounds p₅, f₆ and t₅ had strong activities against both susceptible and resistant Staphylococcus aureus strains, but not activity against a vancomycin and methicillin resistant Staphylococcus aureus isolated from a human sample.
View Article and Find Full Text PDF