p-Chloroamphetamine (PCA), an amphetamine derivative, has been shown to induce serotonergic toxicity. However, the precise mechanism of serotonergic toxicity induced by PCA remains unclear. In this study, PCA treatment (20 mg/kg, i.
View Article and Find Full Text PDFTreatment with ginsenosides attenuated KA-induced seizures and oxidative stress in the synaptosome, and reduced synaptic vesicles at the presynaptic terminals dose-dependently. The adenosine A(2A) receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl) xanthine reversed the ginsenoside-mediated pharmacological actions. Neither the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine nor the adenosine A(2B) receptor antagonist alloxazine affected the ginsenoside-mediated pharmacological actions.
View Article and Find Full Text PDFWe have demonstrated that kainate (KA) induces a reduction in mitochondrial Mn-superoxide dismutase (Mn-SOD) expression in the rat hippocampus and that KA-induced oxidative damage is more prominent in senile-prone (SAM-P8) than senile-resistant (SAM-R1) mice. To extend this, we examined whether KA seizure sensitivity contributed to mitochondrial degeneration in these mouse strains. KA-induced seizure susceptibility in SAM-P8 mice paralleled prominent increases in lipid peroxidation and protein oxidation and was accompanied by significant impairment in glutathione homeostasis in the hippocampus.
View Article and Find Full Text PDFOxidative stress may contribute to epileptogenicity in genetic models of epilepsy. To address this, we examined the enzymatic activity of cytosolic Cu/Zn superoxide dismutase (SOD-1), mitochondrial Mn superoxide dismutase (SOD-2), and glutathione peroxidase (GPx) in the developing hippocampus of genetically epilepsy-prone rats (GEPR-9s). We also measured changes in the GSH/GSSG ratio, lipid peroxidation, and protein oxidation at post-natal days (PD) 7, 30, and 90, respectively.
View Article and Find Full Text PDFWe showed that dextromethorphan (DM) provides neuroprotective/anticonvulsant effects and that DM and its major metabolite, dextrorphan, have a high-affinity for sigma(1) receptors, but a low affinity for sigma(2) receptors. In addition, we found that DM has a higher affinity than DX for sigma(1) sites, whereas DX has a higher affinity than DM for PCP sites. We extend our earlier findings by showing that DM attenuated trimethyltin (TMT)-induced neurotoxicity (convulsions, hippocampal degeneration and spatial memory impairment) in rats.
View Article and Find Full Text PDF