Nuclear pore complex (NPC) biogenesis is a still enigmatic example of protein self-assembly. We now introduce several cross-reacting anti-Nup nanobodies for imaging intact nuclear pore complexes from frog to human. We also report a simplified assay that directly tracks postmitotic NPC assembly with added fluorophore-labeled anti-Nup nanobodies.
View Article and Find Full Text PDFImportins ferry proteins into nuclei while exportins carry cargoes to the cytoplasm. In the accompanying paper in this issue (Vera Rodriguez et al. 2019.
View Article and Find Full Text PDFXpo4 is a bidirectional nuclear transport receptor that mediates nuclear export of eIF5A and Smad3 as well as import of Sox2 and SRY. How Xpo4 recognizes such a variety of cargoes is as yet unknown. Here we present the crystal structure of the RanGTP·Xpo4·eIF5A export complex at 3.
View Article and Find Full Text PDFNanobodies are single-domain antibodies of camelid origin. We generated nanobodies against the vertebrate nuclear pore complex (NPC) and used them in STORM imaging to locate individual NPC proteins with <2 nm epitope-label displacement. For this, we introduced cysteines at specific positions in the nanobody sequence and labeled the resulting proteins with fluorophore-maleimides.
View Article and Find Full Text PDFNuclear pore complexes (NPCs) conduct nucleocytoplasmic transport and gain transport selectivity through nucleoporin FG domains. Here, we report a structural analysis of the FG Nup62•58•54 complex, which is a crucial component of the transport system. It comprises a ≈13 nanometer-long trimerization interface with an unusual 2W3F coil, a canonical heterotrimeric coiled coil, and a kink that enforces a compact six-helix bundle.
View Article and Find Full Text PDFThe class II release factor RF3 is a GTPase related to elongation factor EF-G, which catalyzes release of class I release factors RF1 and RF2 from the ribosome after termination of protein synthesis. The 3.3 Å crystal structure of the RF3·GDPNP·ribosome complex provides a high-resolution description of interactions and structural rearrangements that occur when binding of this translational GTPase induces large-scale rotational movements in the ribosome.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2008
We report the crystal structure of a translation termination complex formed by the Thermus thermophilus 70S ribosome bound with release factor RF2, in response to a UAA stop codon, solved at 3 A resolution. The backbone of helix alpha5 and the side chain of serine of the conserved SPF motif of RF2 recognize U1 and A2 of the stop codon, respectively. A3 is unstacked from the first 2 bases, contacting Thr-216 and Val-203 of RF2 and stacking on G530 of 16S rRNA.
View Article and Find Full Text PDFAt termination of protein synthesis, type I release factors promote hydrolysis of the peptidyl-transfer RNA linkage in response to recognition of a stop codon. Here we describe the crystal structure of the Thermus thermophilus 70S ribosome in complex with the release factor RF1, tRNA and a messenger RNA containing a UAA stop codon, at 3.2 A resolution.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2007
The crystal structure of an initiation-like 70S ribosome complex containing an 8-bp Shine-Dalgarno (SD) helix was determined at 3.8-A resolution. Translation-libration-screw analysis showed that the inherent anisotropic motions of the SD helix were biased along its helical axis, suggesting that during the first step of translocation, the SD helix moves along its helical screw axis.
View Article and Find Full Text PDFOur understanding of the mechanism of protein synthesis has undergone rapid progress in recent years as a result of low-resolution X-ray and cryo-EM structures of ribosome functional complexes and high-resolution structures of ribosomal subunits and vacant ribosomes. Here, we present the crystal structure of the Thermus thermophilus 70S ribosome containing a model mRNA and two tRNAs at 3.7 A resolution.
View Article and Find Full Text PDFThe leucine/isoleucine/valine-binding protein (LIVBP or LivJ) serves as the primary high-affinity receptor of the Escherichia coli ABC-type transporter for the three aliphatic amino acids. The first structure of LIVBP determined previously without bound ligand showed a molecule comprised of two domains which are far apart and bisected by a wide open, solvent-accessible cleft. Here we report the crystal structures of another ligand-free state and three complexes with the aliphatic amino acids.
View Article and Find Full Text PDFThe bacterial histidine permease is a model system for ABC transporters (traffic ATPases). The water-soluble receptor of this permease, HisJ, binds L-histidine and L-arginine (tightly) and L-lysine and L-ornithine (less tightly) in the periplasm, interacts with the membrane-bound complex (HisQMP2) and induces its ATPase activity, which results in ligand translocation. HisJ is a two-domain protein; in the absence of ligand, the cleft between two domains is open and binding of substrate stabilizes the closed conformation.
View Article and Find Full Text PDFAn amino-terminal fragment of human apolipoprotein E3 (residues 1-165) has been expressed and crystallized in three different crystal forms under similar crystallization conditions. One crystal form has nearly identical cell dimensions to the previously reported orthorhombic (P2(1)2(1)2(1)) crystal form of the amino-terminal 22 kDa fragment of apolipoprotein E (residues 1-191). A second orthorhombic crystal form (P2(1)2(1)2(1) with cell dimensions differing from the first form) and a trigonal (P3(1)21) crystal form were also characterized.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
January 1999
The crystal structure of the Fab fragment of 2E8, the monoclonal IgG1,kappa antibody specific for the low-density lipoprotein (LDL) receptor-binding region of apolipoprotein E (apoE), has been solved by molecular replacement and refined at 1.9 A resolution (PDB entry 12E8). Two 2E8 Fab molecules in the asymmetric unit are related by noncrystallographic symmetry and are hydrogen bonded through a beta-sheet-like intermolecular contact between the heavy-chain complementarity-determining regions 3 (CDRH3) of each molecule.
View Article and Find Full Text PDFTo further investigate favorable effects of divalent cations on the formation of protein crystals, three complexes of Salmonella typhimurium histidine-binding protein were crystallized with varying concentrations of cadmium salts. For each of the three histidine-binding protein complexes, cadmium cations were found to promote or improve crystallization. The optimal cadmium concentration is ligand specific and falls within a narrow concentration range.
View Article and Find Full Text PDFThe defective binding of apolipoprotein (apo) E2 to lipoprotein receptors, an underlying cause of type III hyperlipoproteinemia, results from replacement of Arg 158 with Cys, disrupting the naturally occurring salt bridge between Asp 154 and Arg 158. A new bond between Asp 154 and Arg 150 is formed, shifting Arg 150 out of the receptor binding region. Elimination of the 154-150 salt bridge by site-directed mutagenesis of Asp 154 to Ala restored the receptor binding activity to near normal levels.
View Article and Find Full Text PDFThe family of about 50 periplasmic binding proteins, which exhibit diverse specificity (e.g., carbohydrates, amino acids, dipeptides, oligopeptides, oxyanions, metals, and vitamins) and range in size from 20 to 58 kDa, is a gold mine for an atomic-level investigation of structure and molecular recognition.
View Article and Find Full Text PDFWe have tested the effect of several cations in attempts to crystallize the ligand-bound forms of the leucine/isoleucine/valine-binding protein (LIVBP) (M(r) = 36,700) and leucine-specific binding protein (LBP) (M(r) = 37,000), which act as initial periplasmic receptors for the high-affinity osmotic-shock-sensitive active transport system in bacterial cells. Success was achieved with Cd2+ promoting the most dramatic improvement in crystal size, morphology, and diffraction quality. This comes about 15 years after the ligand-free proteins were crystallized.
View Article and Find Full Text PDFThe structure of the histidine-binding protein (HBP, M(r) = 26,100), involved solely in active transport, has been determined by the molecular replacement technique and refined to 1.89-A resolution and to an R-factor of 0.199.
View Article and Find Full Text PDFSmall-angle x-ray scattering and computer modeling have been used to study the effects of ligand binding to the leucine/isoleucine/valine-binding protein, an initial component of the high-affinity active transport system for branched-chain aliphatic amino acids in Escherichia coli. Measurements were made with no ligand present and with either L-leucine or L-valine present. Upon binding of either leucine or valine, there is a decrease in the radius of gyration, from 23.
View Article and Find Full Text PDFThe structure of the alpha-carbon chain was solved by molecular replacement method at 2.7 A resolution. Neurotoxin I (NTX-I) is one of the main protein components purified from the venom of the central asian cobra Naja naja oxiana.
View Article and Find Full Text PDFCrystals of the neurotoxin-I (NTX-I) from the venom of the middle Asian cobra Naja naja oxiana have been grown by vapour diffusion and dialysis methods. The crystals belong to space group P2(1)2(1)2 with dimension of a = 25.19 A, b = 75.
View Article and Find Full Text PDFLarge three-dimensional crystals of 70 S from Thermus thermophilus have been grown from solutions of 2-methyl-2,4-pentanediol at 4 degrees C and examined in an X-ray synchrotron beam. The space group is P4(1)2(1)2 or P4(3)2(1)2 with unit cell dimensions of a = 510 A and c = 378 A. The diffraction patterns extend to better than 20 A.
View Article and Find Full Text PDFHistidine-binding protein, purified from periplasmic space of Escherichia coli K12, has been crystallized in a form suitable for X-ray analysis. Crystals of average size 0.3 mm x 0.
View Article and Find Full Text PDF