Publications by authors named "Traimate Sangsuwan"

Radiotherapy (RT), a common cancer treatment, unintentionally harms surrounding tissues, including the skin, and hinders wound healing years after treatment. This study aims to understand the mechanisms behind these late-onset adverse effects. We compare skin biopsies from previously irradiated (RT) and non-irradiated (RT) sites in breast cancer survivors who underwent RT years ago.

View Article and Find Full Text PDF

Background: Exposure to low dose rate (LDR) radiation may accelerate aging processes. Previously, we identified numerous LDR-induced pathways involved in oxidative stress (OS) and antioxidant systems, suggesting that these pathways protect against premature senescence (PS). This study aimed to investigate if there are differences between young replicative senescent (RS) and PS cells considering DNA repair kinetics, OS, and DNA damage localized in the telomeres.

View Article and Find Full Text PDF

Ionizing radiation (IR) kills cells mainly through induction of DNA damages and the surviving cells may suffer from mutations. Transgenerational effects of IR are well documented, but the exact mechanisms underlying them are less well understood; they include induction of mutations in germ cells and epigenetic inheritance. Previously, effects in the offspring of mice and zebrafish exposed to IR have been reported.

View Article and Find Full Text PDF

Purpose: The aim of this study was to explore the effects of chronic low-dose-rate gamma-radiation at a multi-scale level. The specific objective was to obtain an overall view of the endothelial cell response, by integrating previously published data on different cellular endpoints and highlighting possible different mechanisms underpinning radiation-induced senescence.

Materials And Methods: Different datasets were collected regarding experiments on human umbilical vein endothelial cells (HUVECs) which were chronically exposed to low dose rates (0, 1.

View Article and Find Full Text PDF

It is well-known that the cytotoxicity and mutagenic effects of high dose rate (HDR) ionizing radiation (IR) are increased by increasing the dose but less is known about the effects of chronic low dose rate (LDR). In vitro, we have shown that in addition to the immediate interaction of IR with DNA (the direct and indirect effects), low doses and chronic LDR exposure induce endogenous oxidative stress. During elevated oxidative stress, reactive oxygen species (ROS) react with DNA modifying its structure.

View Article and Find Full Text PDF

Nearly half of all cancers are treated with radiotherapy alone or in combination with other treatments, where damage to normal tissues is a limiting factor for the treatment. Radiotherapy-induced adverse health effects, mostly of importance for cancer patients with long-term survival, may appear during or long time after finishing radiotherapy and depend on the patient's radiosensitivity. Currently, there is no assay available that can reliably predict the individual's response to radiotherapy.

View Article and Find Full Text PDF

As a consequence of the success of present-day cancer treatment, radiotherapy-induced vascular disease is emerging. This disease is caused by chronic inflammatory activation and is likely orchestrated in part by microRNAs. In irradiated versus nonirradiated conduit arteries from patients receiving microvascular free tissue transfer reconstructions, irradiation resulted in down-regulation of miR-29b and up-regulation of miR-146b.

View Article and Find Full Text PDF

Our previous results showed that in addition to the immediate interaction of ionising radiation with DNA (direct and indirect effect), low-dose and chronic low-dose rate of irradiation induce endogenous oxidative stress. During oxidative stress, free radicals react with DNA, nucleoside triphosphates (dNTPs), proteins and lipids, and modify their structures. The MYH and MTH1 genes play important roles in preventing mutations induced by 8-hydroxy-guanine, which is an oxidised product of guanine.

View Article and Find Full Text PDF

A phenomenon in which exposure to a low adapting dose of radiation makes cells more resistant to the effects of a subsequent high dose exposure is termed radio-adaptive response. Adaptive response could hypothetically reduce the risk of late adverse effects of chronic or acute radiation exposures in humans. Understanding the underlying mechanisms of such responses is of relevance for radiation protection as well as for the clinical applications of radiation in medicine.

View Article and Find Full Text PDF

The aim of the present study was to analyse the dose rate effect of gamma radiation at the level of mutations, chromosomal aberrations, and cell growth in TK6 cells with normal as well as reduced levels of hMTH1 protein. TK6 cells were exposed to gamma radiation at dose rates ranging from 1.4 to 30.

View Article and Find Full Text PDF

Oxidative stress occurs when the generation of reactive oxygen species (ROS) exceeds the cellular antioxidant capacity. The excess ROS react with and modify cellular components. Nucleic acid modifications are of principal interest because they may cause mutations.

View Article and Find Full Text PDF