Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a key regulator of mitochondrial biogenesis and antioxidative defenses, and it may play a critical role in Parkinson's disease (PD). F-box/WD repeat domain-containing protein (FBXW7), an E3 protein ligase, promotes the degradation of substrate proteins through the ubiquitin-proteasome system (UPS) and leads to the clearance of PGC-1α. Here, we elucidate a novel post-translational mechanism for regulating PGC-1α levels in neurons.
View Article and Find Full Text PDFMutations in SNCA, the gene encoding α-synuclein (αSyn), cause familial Parkinson's disease (PD) and aberrant αSyn is a key pathological hallmark of idiopathic PD. This α-synucleinopathy leads to mitochondrial dysfunction, which may drive dopaminergic neurodegeneration. PARKIN and PINK1, mutated in autosomal recessive PD, regulate the preferential autophagic clearance of dysfunctional mitochondria ("mitophagy") by inducing ubiquitylation of mitochondrial proteins, a process counteracted by deubiquitylation via USP30.
View Article and Find Full Text PDFBackground: In the present study we assessed the protective effects of a pharmacological approach to stabilize the retromer complex in a PD mouse model. Missense mutations in the VPS35 gene are a rare cause of familial PD. The VPS35 protein is a subunit of the retromer cargo recognition complex and has a variety of functions within neurons, many of which are potentially relevant for the pathophysiology of PD.
View Article and Find Full Text PDF