Parkinson disease (PD) is the second most common neurodegenerative disease, characterized by both motor and cognitive features. Motor symptoms primarily involve midbrain dopaminergic neurons, while cognitive dysfunction involves cortical neurons. Environmental factors are important contributors to PD risk.
View Article and Find Full Text PDFAs the field of neural organoids and assembloids rapidly expands, there is an emergent need for guidance and advice on designing, conducting and reporting experiments to increase the reproducibility and utility of these models. Here, our consortium- representing specialized laboratories from around the world- presents a framework for the experimental process that ranges from ensuring the quality and integrity of human pluripotent stem cells to characterizing and manipulating neural cells in vitro, and from transplantation techniques to considerations for modeling human development, evolution, and disease. As with all scientific endeavors, we advocate for rigorous experimental designs tailored to explicit scientific questions, and transparent methodologies and data sharing, to provide useful knowledge for both current research practices and for developing regulatory standards.
View Article and Find Full Text PDFAlpha-synuclein (αS)-rich Lewy bodies and neurites in the cerebral cortex correlate with the presence of dementia in Parkinson disease (PD) and Dementia with Lewy bodies (DLB), but whether αS influences synaptic vesicle dynamics in human cortical neurons is unknown. Using a new iPSC-based assay platform for measuring synaptic vesicle cycling, we found that in human cortical glutamatergic neurons, increased αS from either transgenic expression or triplication of the endogenous locus in patient-derived neurons reduced synaptic vesicle cycling under both stimulated and spontaneous conditions. Thus, using a robust, easily adopted assay platform, we show for the first time αS-induced synaptic dysfunction in human cortical neurons, a key cellular substrate for PD dementia and DLB.
View Article and Find Full Text PDFBackground: Impairment of the ubiquitin-proteasome system (UPS) has been implicated in abnormal protein accumulation in Alzheimer's disease. It remains unclear if genetic variation affects the intrinsic properties of neurons that render some individuals more vulnerable to UPS impairment.
Methods: Induced pluripotent stem cell (iPSC)-derived neurons were generated from over 50 genetically variant and highly characterized participants of cohorts of aging.
ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins.
View Article and Find Full Text PDFRecent genetic studies on Alzheimer's disease (AD) have brought microglia under the spotlight, as loci associated with AD risk are enriched in genes expressed in microglia. Several of these genes have been recognized for their central roles in microglial functions. Increasing evidence suggests that SHIP1, the protein encoded by the AD-associated gene INPP5D, is an important regulator of microglial phagocytosis and immune response.
View Article and Find Full Text PDFMicroglia and neuroinflammation play an important role in the development and progression of Alzheimer's disease (AD). Inositol polyphosphate-5-phosphatase D (INPP5D/SHIP1) is a myeloid-expressed gene genetically-associated with AD. Through unbiased analyses of RNA and protein profiles in INPP5D-disrupted iPSC-derived human microglia, we find that reduction in INPP5D activity is associated with molecular profiles consistent with disrupted autophagy and inflammasome activation.
View Article and Find Full Text PDFMicroRNAs (miRNAs) regulate fundamental biological processes by silencing mRNA targets and are dysregulated in many diseases. Therefore, miRNA replacement or inhibition can be harnessed as potential therapeutics. However, existing strategies for miRNA modulation using oligonucleotides and gene therapies are challenging, especially for neurological diseases, and none have yet gained clinical approval.
View Article and Find Full Text PDFSORL1 is implicated in the pathogenesis of Alzheimer's disease (AD) through genetic studies. To interrogate the roles of SORL1 in human brain cells, SORL1-null induced pluripotent stem cells (iPSCs) were differentiated to neuron, astrocyte, microglial, and endothelial cell fates. Loss of SORL1 leads to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes.
View Article and Find Full Text PDFSeveral iPSC-derived three-dimensional (3D) cultures have been generated to model Alzheimer's disease (AD). While some AD-related phenotypes have been identified across these cultures, none of them could recapitulate multiple AD-related hallmarks in one model. To date, the transcriptomic features of these 3D models have not been compared with those of human AD brains.
View Article and Find Full Text PDFDespite decades of genetic studies on late-onset Alzheimer's disease, the underlying molecular mechanisms remain unclear. To better comprehend its complex etiology, we use an integrative approach to build robust predictive (causal) network models using two large human multi-omics datasets. We delineate bulk-tissue gene expression into single cell-type gene expression and integrate clinical and pathologic traits, single nucleotide variation, and deconvoluted gene expression for the construction of cell type-specific predictive network models.
View Article and Find Full Text PDFAlzheimer's disease (AD) manifests along a spectrum of cognitive deficits and levels of neuropathology. Genetic studies support a heterogeneous disease mechanism, with around 70 associated loci to date, implicating several biological processes that mediate risk for AD. Despite this heterogeneity, most experimental systems for testing new therapeutics are not designed to capture the genetically complex drivers of AD risk.
View Article and Find Full Text PDFZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's Disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis. Co-immunoprecipitation of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA splicing proteins.
View Article and Find Full Text PDFMicroRNAs (miRNAs) regulate fundamental biological processes by silencing mRNA targets and are dysregulated in many diseases. Therefore, miRNA replacement or inhibition can be harnessed as potential therapeutics. However, existing strategies for miRNA modulation using oligonucleotides and gene therapies are challenging, especially for neurological diseases, and none have yet gained clinical approval.
View Article and Find Full Text PDFMitochondrial dysfunction and axon loss are hallmarks of neurologic diseases. Gasdermin (GSDM) proteins are executioner pore-forming molecules that mediate cell death, yet their roles in the central nervous system (CNS) are not well understood. Here, we find that one GSDM family member, GSDME, is expressed by both mouse and human neurons.
View Article and Find Full Text PDFDespite ongoing debate, the amyloid β-protein (Aβ) remains the prime therapeutic target for the treatment of Alzheimer's disease (AD). However, rational drug design has been hampered by a lack of knowledge about neuroactive Aβ. To help address this deficit, we developed live-cell imaging of iPSC-derived human neurons (iNs) to study the effects of the most disease relevant form of Aβ-oligomeric assemblies (oAβ) extracted from AD brain.
View Article and Find Full Text PDFSORL1 is strongly implicated in the pathogenesis of Alzheimer's disease (AD) through human genetic studies that point to an association of reduced SORL1 levels with higher risk for AD. To interrogate the role(s) of SORL1 in human brain cells, SORL1 null iPSCs were generated, followed by differentiation to neuron, astrocyte, microglia, and endothelial cell fates. Loss of SORL1 led to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes.
View Article and Find Full Text PDFMicroglia and neuroinflammation are implicated in the development and progression of Alzheimer's disease (AD). To better understand microglia-mediated processes in AD, we studied the function of INPP5D/SHIP1, a gene linked to AD through GWAS. Immunostaining and single nucleus RNA sequencing confirmed that INPP5D expression in the adult human brain is largely restricted to microglia.
View Article and Find Full Text PDFAmyloid β-protein (Aβ) plays an initiating role in Alzheimer's disease (AD), but only a small number of groups have studied Aβ extracted from human brain. Most prior studies have utilized synthetic Aβ peptides, but the relevance of these test tube experiments to the conditions that prevail in AD is uncertain. Here, we describe three distinct methods for studying Aβ from cortical tissue.
View Article and Find Full Text PDFBackground: Alzheimer's Disease (AD) affects millions globally, but therapy development is lagging. New experimental systems that monitor neuronal functions in conditions approximating the AD brain may be beneficial for identifying new therapeutic strategies.
Methods: We expose cultured neurons to aqueous-soluble human brain extract from 43 individuals across a spectrum of AD pathology.
Mosaic loss of Chromosome Y (LOY) is a common acquired structural mutation in the leukocytes of aging men that is correlated with several age-related diseases, including Alzheimer's disease (AD). The molecular basis of LOY in brain cells has not been systematically investigated. Here, we present a large-scale analysis of single-cell and single-nuclei RNA brain data sets, yielding 851,674 cells, to investigate the cell type-specific burden of LOY.
View Article and Find Full Text PDFBackground And Objectives: Identifying protein targets that provide cognitive reserve is a strategy to prevent and treat Alzheimer disease and Alzheimer disease related dementias (AD/ADRD). Previous studies using bulk human brain tissue reported 12 proteins associated with cognitive reserve. This study examined whether the same proteins from induced neurons (iNs) are associated with cognitive reserve of their human donors.
View Article and Find Full Text PDF