For external beam radiotherapy using photons or particles, upright patient positioning on a rotating, robotic chair (a gantry-less system) could offer substantial cost savings. In this study, we considered the feasibility of upright breast radiotherapy using a robotic radiotherapy chair, for (i) a cohort of 9 patients who received conventional supine radiotherapy using photons for a diagnosis of primary breast cancer, plus (ii) 7 healthy volunteers, selected to have relatively large bra cup sizes. We studied: overall body positioning, arm positioning, beam access, breast reproducibility, and comfort.
View Article and Find Full Text PDFThis study presents position changes of a few radiotherapy-relevant thoracic organs between upright and typical supine patient orientations. Using tools in a commercial treatment planning system (TPS), key anatomical distances were measured for four-dimensional CT data sets and analyzed for the two patient orientations. The uncertainty was calculated as the 95% confidence interval (CI) on the relative difference for each of the four analyzed changes for upright relative to supine, as follows: the distance of the bottom of the heart to the top of the sternum, it changed +2.
View Article and Find Full Text PDFTreating and imaging patients in the upright orientation is gaining acceptance in radiation oncology and radiology and has distinct advantages over the recumbent position. An IRB approved study to investigate the positions and orientations of the male pelvic organs between the supine and upright positions was conducted. The study comprised of scanning 15 male volunteers (aged 55-75 years) on a 0.
View Article and Find Full Text PDFThe use of multi-modality imaging technologies such as CT, MRI, and PET imaging is state of the art for radiation therapy treatment planning. Except for a limited number of low magnetic field MR scanners the majority of such imaging technologies can only image the patient in a recumbent position. Delivering radiation therapy treatments with the patient in an upright orientation has many benefits and several companies are now developing upright patient positioners combined with upright diagnostic helical CT scanners to facilitate upright radiation therapy treatments.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
July 2023
Purpose: In proton therapy, the clinical application of linear energy transfer (LET) optimization remains contentious, in part because of challenges associated with the definition and calculation of LET and its exact relationship with relative biological effectiveness (RBE) because of large variation in experimental in vitro data. This has raised interest in other metrics with favorable properties for biological optimization, such as the number of proton track ends in a voxel. In this work, we propose a novel model for clinical calculations of RBE, based on proton track end counts.
View Article and Find Full Text PDFRecently, a number of clinical studies have explored links between possible Relative Biological Effectiveness (RBE) elevations and patient toxicities and/or image changes following proton therapy. Our objective was to perform a systematic review of such studies. We applied a "Problem [RBE], Intervention [Protons], Population [Patients], Outcome [Side effect]" search strategy to the PubMed database.
View Article and Find Full Text PDFObjectives: High-energy Proton Beam Therapy (PBT) commenced in England in 2018 and NHS England commissions PBT for 1.5% of patients receiving radical radiotherapy. We sought expert opinion on the level of provision.
View Article and Find Full Text PDFThe strongevidence that proton Relative Biological Effectiveness (RBE) varies with Linear Energy Transfer (LET) has led to an interest in applying LET within treatment planning. However, there is a lack of consensus on LET definition, Monte Carlo (MC) parameters or clinical methodology. This work aims to investigate how common variations of LET definition may affect potential clinical applications.
View Article and Find Full Text PDFPurpose: We have experimentally and computationally characterized the PTW microSilicon 60023-type diode's performance in 6 and 15 MV photon fields ≥5 × 5 mm projected to isocenter. We tested the detector on- and off-axis at 5 and 15 cm depths in water, and investigated whether its response could be improved by including within it a thin airgap.
Methods: Experimentally, detector readings were taken in fields generated by a Varian TrueBeam linac and compared with doses-to-water measured using Gafchromic film and ionization chambers.
Purpose: In small megavoltage photon fields, the accuracies of an unmodified PTW 60017-type diode dosimeter and six diodes modified by adding airgaps of thickness 0.6-1.6 mm and diameter 3.
View Article and Find Full Text PDFBackground Context: Patient expectations have been demonstrated to influence recovery following spine surgery. Addressing patient expectations specifically in regards to pain and postsurgical healing is an important factor in improving recovery patterns. Presurgical education can potentially help manage patient expectations.
View Article and Find Full Text PDFPurpose: Clinical practice assumes a fixed proton relative biological effectiveness (RBE) of 1.1, but in vitro experiments demonstrate higher RBEs at the distal edge of the proton spread-out Bragg peak, that is, in a region that falls within the lung for chest-wall patients. We performed retrospective qualitative and quantitative analyses of lung-density changes-indicative of asymptomatic fibrosis-for chest-wall patients treated with protons or photons.
View Article and Find Full Text PDFProton radiotherapy is undergoing rapid expansion both within the UK and internationally, but significant challenges still need to be overcome if maximum benefit is to be realised from this technique. One major limitation is the persistent uncertainty in proton relative biological effectiveness (RBE). While RBE values are needed to link proton radiotherapy to our existing experience with photon radiotherapy, RBE remains poorly understood and is typically incorporated as a constant dose scaling factor of 1.
View Article and Find Full Text PDFAnn Otol Rhinol Laryngol
September 2018
Objective: To determine whether we could reduce the time that patients undergoing tonsillectomy are observed postoperatively without decreasing the quality of care, which would eliminate the unnecessary use of resources to monitor those patients.
Study Design: Prospective cohort.
Methods: Patients undergoing tonsillectomy were recruited for the study prior to their operation.
Differences in detector response between measured small fields, f and wider reference fields, f , can be overcome by using correction factors [Formula: see text] or by designing detectors with field-size invariant responses. The changing response in small fields is caused by perturbations of the electron fluence within the detector sensitive volume. For solid-state detectors, it has recently been suggested that these perturbations might be caused by the non-water-equivalent effective atomic numbers Z of detector materials, rather than by their non-water-like densities.
View Article and Find Full Text PDFAim: Anterior-oblique (AO) proton beams can form an attractive option for prostate patients receiving external beam radiotherapy (EBRT) as they avoid the femoral heads. For a cohort with hydrogel prostate-rectum spacers, we asked whether it was possible to generate AO proton plans robust to end-of-range elevations in linear energy transfer (LET) and modeled relative biological effectiveness (RBE). Additionally we considered how rectal spacers influenced planned dose distributions for AO and standard bilateral (SB) proton beams versus intensity-modulated radiotherapy (IMRT).
View Article and Find Full Text PDFPurpose: For prostate treatments, robust evidence regarding the superiority of either intensity modulated radiation therapy (IMRT) or proton therapy is currently lacking. In this study we investigated the circumstances under which proton therapy should be expected to outperform IMRT, particularly the proton beam orientations and relative biological effectiveness (RBE) assumptions.
Methods And Materials: For 8 patients, 4 treatment planning strategies were considered: (A) IMRT; (B) passively scattered standard bilateral (SB) proton beams; (C) passively scattered anterior oblique (AO) proton beams, and (D) AO intensity modulated proton therapy (IMPT).
Int J Radiat Oncol Biol Phys
May 2016
Purpose: Clinical proton beam therapy has been based on the use of a generic relative biological effectiveness (RBE) of ∼1.1. However, emerging data have suggested that Fanconi anemia (FA) and homologous recombination pathway defects can lead to a variable RBE, at least in vitro.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
May 2016
In small photon fields ionisation chambers can exhibit large deviations from Bragg-Gray behaviour; the EGSnrc Monte Carlo (MC) code system has been employed to investigate this 'Bragg-Gray breakdown'. The total electron (+positron) fluence in small water and air cavities in a water phantom has been computed for a full linac beam model as well as for a point source spectrum for 6 MV and 15 MV qualities for field sizes from 0.25 × 0.
View Article and Find Full Text PDFAlthough a wide range of approaches have been developed to automatically assess the volume of brain regions from MRI, the reproducibility of these algorithms across different scanners and pulse sequences, their accuracy in different clinical populations and sensitivity to real changes in brain volume have not always been comprehensively examined. Firstly we present a comprehensive testing protocol which comprises 312 freely available MR images to assess the accuracy, reproducibility and sensitivity of automated brain segmentation techniques. Accuracy is assessed in infants, young adults and patients with Alzheimer's disease in comparison to gold standard measures by expert observers using a manual technique based on Cavalieri's principle.
View Article and Find Full Text PDF