In Parkinson's disease substantia nigra neurons degenerate likely due to oxidative damage interacting with genetic risk factors. Here, SH-SY5Y cells expressing wild-type or A53T alpha-synuclein had increased sensitivity to methyl-4-phenylpyridinium iodide (MPP(+)), which induces mitochondrial dysfunction, and 6-hydroxydopamine (6-OHDA), which causes oxidative stress. Edaravone protected only against MPP(+), and EGCG ((-)-epigallocatechin-3-O-gallate) protected only against 6-OHDA.
View Article and Find Full Text PDFThe ability of cells to control the balance between the generation and quenching of reactive oxygen species is important in combating potentially damaging effects of oxidative stress. One mechanism that cells use to maintain redox homeostasis is the antioxidant response pathway. Antioxidant response elements (AREs) are cis-acting elements located in regulatory regions of antioxidant and phase II detoxification genes.
View Article and Find Full Text PDFThe beta-2 adrenergic receptor (B2AR) is well known to form oligomeric complexes in vivo, but the functional significance of this process is not fully understood. The present results identify an effect of oligomerization of the human B2AR on the membrane trafficking of receptors after agonist-induced endocytosis in stably transfected human embryonic kidney 293 cells. A sequence present in the cytoplasmic tail of the B2AR has been shown previously to be required for efficient recycling of internalized receptors.
View Article and Find Full Text PDFMyosin-Va was identified as a microtubule binding protein by cosedimentation analysis in the presence of microtubules. Native myosin-Va purified from chick brain, as well as the expressed globular tail domain of this myosin, but not head domain bound to microtubule-associated protein-free microtubules. Binding of myosin-Va to microtubules was saturable and of moderately high affinity (approximately 1:24 Myosin-Va:tubulin; Kd = 70 nM).
View Article and Find Full Text PDF