In addition to the cyanobacterial N2-fixers (diazotrophs), there is a high nifH gene diversity of non-cyanobacterial groups present in marine environments, yet quantitative information about these groups is scarce. N2 fixation potential (nifH gene expression), diversity and distributions of the uncultivated diazotroph phylotype γ-24774A11, a putative gammaproteobacterium, were investigated in the western South Pacific Ocean. γ-24774A11 gene copies correlated positively with diazotrophic cyanobacteria, temperature, dissolved organic carbon and ambient O2 saturation, and negatively with depth, chlorophyll a and nutrients, suggesting that carbon supply, access to light or inhibitory effects of DIN may control γ-24774A11 abundances.
View Article and Find Full Text PDFThe Tropical North Atlantic (TNAtl) plays a critical role in the marine nitrogen cycle, as it supports high rates of biological nitrogen (N(2)) fixation, yet it is unclear whether this process is limited by the availability of iron (Fe), phosphate (P) or is co-limited by both. In order to investigate the impact of nutrient limitation on the N(2)-fixing microorganisms (diazotrophs) in the TNAtl, trace metal clean nutrient amendment experiments were conducted, and the expression of nitrogenase (nifH) in cyanobacterial diazotrophs in response to the addition of Fe, P, or Fe+P was measured using quantitative PCR. To provide context, N(2) fixation rates associated with the <10 μm community and diel nifH expression in natural cyanobacterial populations were measured.
View Article and Find Full Text PDF