Publications by authors named "Tracy S Obertone"

Dopamine (DA) functions as an essential neuromodulator in the brain and retina such that disruptions in the dopaminergic system are associated with common neurologic disorders such as Parkinson's disease. Although a reduction in DA content has been observed in diabetes, its effects in the development of diabetes-induced neuropathy remains unknown. Because the retina is rich in DA and has a well known diabetes-induced pathology (diabetic retinopathy or DR), this study was designed to examine the role of retinal DA deficiency in early visual defects in DR.

View Article and Find Full Text PDF

Inflammatory bowel disease, mainly Crohn's disease and ulcerative colitis, are characterized by epithelial barrier disruption and altered immune regulation. Colonic Ste20-like proline/alanine-rich kinase (SPAK) plays a role in intestinal inflammation, but its underlying mechanisms need to be defined. Both SPAK-transfected Caco2-BBE cells and villin-SPAK transgenic (TG) FVB/6 mice exhibited loss of intestinal barrier function.

View Article and Find Full Text PDF

MicroRNAs (miRNAs), which are noncoding RNAs that posttranscriptionally inhibit expression of target genes, have recently emerged as important regulators of many cellular functions such as cell differentiation. The epithelial di/tripeptide membrane transporter PepT1 is expressed in highly differentiated cells (the villous tip) but not in undifferentiated cells (the crypt) of the small intestine. Here, we investigated the regulation of PepT1 expression by miRNAs and its functional consequences.

View Article and Find Full Text PDF

Background: Intestinal epithelial expression of antioxidants and nuclear factor kappa B (NF-κB) contribute to mucosal barrier integrity and epithelial homeostasis, two key events in the pathogenesis of inflammatory bowel disease (IBD). Genetic restoration of intestinal epithelial prohibitin 1 (PHB) levels during experimental colitis reduces the severity of disease through sustained epithelial antioxidant expression and reduced NF-κB activation. To determine the therapeutic potential of restoring epithelial PHB during experimental colitis in mice, we assessed two methods of PHB colonic mucosal delivery: adenovirus-directed administration by enema and poly(lactic acid) nanoparticle (NPs) delivery by gavage.

View Article and Find Full Text PDF

We have reported that epithelial adenosine 2B receptor (A(2B)AR) mRNA and protein are up-regulated in colitis, which we demonstrated to be regulated by tumor necrosis factor alpha (TNF-alpha). Here, we examined the mechanism that governs A(2B)AR expression during colitis. A 1.

View Article and Find Full Text PDF

The Ste20-related protein proline/alanine-rich kinase (SPAK) plays important roles in cellular functions such as cell differentiation and regulation of chloride transport, but its roles in pathogenesis of intestinal inflammation remain largely unknown. Here we report significantly increased SPAK expression levels in hyperosmotic environments, such as mucosal biopsy samples from patients with Crohn's disease, as well as colon tissues of C57BL/6 mice and Caco2-BBE cells treated with hyperosmotic medium. NF-kappaB and Sp1-binding sites in the SPAK TATA-less promoter are essential for SPAK mRNA transcription.

View Article and Find Full Text PDF

Background & Aims: Increased free radicals and/or impaired antioxidant defenses have been shown to play a pathogenetic role in human and animal models of inflammatory bowel disease. Our previous studies showed that prohibitin (PHB) levels are decreased during colitis and that cultured intestinal epithelial cells overexpressing PHB are protected from oxidative stress. This study investigated the effect of intestinal epithelial cell-specific PHB overexpression on oxidative stress associated with experimental colitis and the potential mechanism by which PHB functions as an antioxidant using PHB transgenic mice.

View Article and Find Full Text PDF

Ecto-phosphorylation plays an important role in many cellular functions. The transmembrane glycoprotein CD98 contains potential phosphorylation sites in its extracellular C-terminal tail. We hypothesized that extracellular signaling through ecto-protein kinases (ePKs) might lead to ecto-phosphorylation of CD98 and influence its multiple functions, including its role in cell-cell interactions.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is thought to result from commensal flora, aberrant cellular stress, and genetic factors. Here we show that the expression of colonic Ste20-like proline-/alanine-rich kinase (SPAK) that lacks a PAPA box and an F-alpha helix loop is increased in patients with IBD. The same effects were observed in a mouse model of dextran sodium sulfate-induced colitis and in Caco2-BBE cells treated with the pro-inflammatory cytokine tumor necrosis factor (TNF)-alpha.

View Article and Find Full Text PDF

Prohibitin (PHB) is a highly conserved protein that has multiple functions in the cell. We recently demonstrated that PHB plays an important role in combating oxidative stress and its expression is down-regulated in human and animal models of inflammatory bowel disease. Little is known regarding the regulation of PHB expression in intestine or other tissues.

View Article and Find Full Text PDF

Adenosine 2b receptor (A2bR), a G-protein coupled receptor positively coupled to adenylate cyclase, mediates key events such as chloride, IL-6 and fibronectin secretion in intestinal epithelial cells and is upregulated during intestinal inflammation. In order to gain insight into the overall mechanism of A2bR activation, in this study, we sought to characterize the AC isoform associated with A2bR signaling. The colonic epithelial cell line T84, expressing only the A2b subtype of adenosine receptor, and Chinese hamster ovary (CHO) cells, were used in these studies.

View Article and Find Full Text PDF