Publications by authors named "Tracy S Heng"

Sepsis is an aggressive inflammatory syndrome and a global health burden estimated to kill 7.3 million people annually. Single-target molecular therapies have not addressed the multiple disease pathways triggered by septic injury.

View Article and Find Full Text PDF

Multipotent mesenchymal stromal cells (MSCs) possess reparative and immunoregulatory properties, making them attractive candidates for cellular therapy. However, the majority of MSCs administered i.v.

View Article and Find Full Text PDF

Recent evidence suggests that the decline in resistance to viral infections with age occurs predominantly as a result of a gradual loss of naïve antigen-specific T cells. As such, restoration of the naïve T cell repertoire to levels seen in young healthy adults may improve defence against infection in the aged. We have previously shown that sex steroid ablation (SSA) rejuvenates the ageing thymus and increases thymic export of naïve T cells, but it remains unclear whether T cell responses are improved.

View Article and Find Full Text PDF

Cytotoxic antineoplastic therapy is used to treat malignant disease but results in long-term immunosuppression in postpubertal and adult individuals, leading to increased incidence and severity of opportunistic infections. We have previously shown that sex steroid ablation (SSA) reverses immunodeficiencies associated with age and hematopoietic stem cell transplantation in both autologous and allogeneic settings. In this study, we have assessed the effects of SSA by surgical castration on T cell recovery of young male mice following cyclophosphamide treatment as a model for the impact of chemotherapy.

View Article and Find Full Text PDF

T cell development is a complex and tightly regulated process involving reciprocal interactions between the thymic stroma and differentiating thymocytes. Normal thymic function is critical for immunity and microenvironmental defects predispose to dysregulation in the T cell compartment. Thymic structure and function are also severely damaged by chemotherapy and pre-transplant conditioning.

View Article and Find Full Text PDF

The ability of stem cells to differentiate into various different cell types holds great promise for the treatment of irreversible tissue damage that occurs in many debilitating conditions. With stem cell research advancing at a tremendous pace, it is becoming clear that one of the greatest hurdles to successful stem cell-derived therapies is overcoming immune rejection of the transplant. Although the use of immunosuppressive drugs can decrease the incidence of acute graft rejection, the burden of problems associated with prolonged immunosuppression must be reduced.

View Article and Find Full Text PDF

The Immunological Genome Project combines immunology and computational biology laboratories in an effort to establish a complete 'road map' of gene-expression and regulatory networks in all immune cells.

View Article and Find Full Text PDF

Purpose: To determine if temporarily blocking sex steroids prior to stem cell transplantation can increase thymus function and thus enhance the rate of T cell regeneration.

Experimental Design: This was a pilot study of luteinizing hormone-releasing hormone agonist (LHRH-A) goserelin given 3 weeks prior to allogeneic or autologous hemopoietic stem cell transplantation and administered up to 3 months posttransplantation. Patients (with or without LHRH-A administration) were assessed from 1 week to 12 months posttransplantation for multiple immunologic variables by flow cytometry (particularly naïve T cells), quantitative PCR to assess T-cell receptor excision circle levels (as a correlate of thymus function), CDR3 length analysis to determine the variability of the TCR repertoire, and in vitro assays to determine functional T cell responses.

View Article and Find Full Text PDF

Foxp3-expressing regulatory T cells (Treg) play an essential role in maintaining tolerance to self antigens and are generated under physiological conditions when developing T cells encounter antigens expressed by thymic epithelial cells. We have addressed the possibility that Treg can be exploited to prevent or even suppress ongoing immune responses to foreign antigens. To this end, one must develop methods that permit the de novo generation of Treg specific for foreign antigens in peripheral lymphoid tissue.

View Article and Find Full Text PDF

Background: Autologous hematopoietic stem cell transplantation (auto-HSCT) patients experience long-term immunosuppression, which increases susceptibility to infection and relapse rates due to minimal residual disease (MRD). Sex steroid (SS) ablation is known to reverse age-related thymic atrophy and decline in B-cell production

Methods: This study used a congenic HSCT mouse model to analyze the effects of SS ablation (through surgical castration) on immune reconstitution and growth factor production following auto-HSCT. Bone marrow (BM) and thymic stromal cell (TSCs) populations were analyzed using RT-PCR and were tested for the production of growth factors previously implicated in immune reconstitution or age-relate immune degeneration

Results: Castration increased bone marrow (BM), thymic, and splenic cellularity following auto-HSCT.

View Article and Find Full Text PDF

Age-associated thymic involution is accompanied by decreased thymic output. This adversely affects general immune competence and T cell recovery following cytoreductive treatments such as chemotherapy. A causal link between increasing sex steroids and age-related thymic atrophy is well established.

View Article and Find Full Text PDF

The thymus undergoes age-related atrophy, coincident with increased circulating sex steroids from puberty. The impact of thymic atrophy is most profound in clinical conditions that cause a severe loss in peripheral T cells with the ability to regenerate adequate numbers of naive CD4+ T cells indirectly correlating with patient age. The present study demonstrates that androgen ablation results in the complete regeneration of the aged male mouse thymus, restoration of peripheral T cell phenotype and function and enhanced thymus regeneration following bone marrow transplantation.

View Article and Find Full Text PDF