Glutaminase controls the first step in glutaminolysis, impacting bioenergetics, biosynthesis and oxidative stress. Two isoenzymes exist in humans, GLS and GLS2. GLS is considered prooncogenic and overexpressed in many tumours, while GLS2 may act as prooncogenic or as a tumour suppressor.
View Article and Find Full Text PDFMost kidney cancers are metabolically dysfunctional, but how this dysfunction affects cancer progression in humans is unknown. We infused C-labelled nutrients in over 80 patients with kidney cancer during surgical tumour resection. Labelling from [U-C]glucose varies across subtypes, indicating that the kidney environment alone cannot account for all tumour metabolic reprogramming.
View Article and Find Full Text PDFMost kidney cancers display evidence of metabolic dysfunction but how this relates to cancer progression in humans is unknown. We used a multidisciplinary approach to infuse C-labeled nutrients during surgical tumour resection in over 70 patients with kidney cancer. Labeling from [U-C]glucose varies across cancer subtypes, indicating that the kidney environment alone cannot account for all metabolic reprogramming in these tumours.
View Article and Find Full Text PDFMost tumor cells can use glutamine (Gln) for energy generation and biosynthetic purposes. Glutaminases (GAs) convert Gln into glutamate and ammonium. In humans, GAs are encoded by two genes: and .
View Article and Find Full Text PDFTargeting metabolic vulnerabilities has been proposed as a therapeutic strategy in renal cell carcinoma (RCC). Here, we analyzed the metabolism of patient-derived xenografts (tumorgrafts) from diverse subtypes of RCC. Tumorgrafts from -mutant clear cell RCC (ccRCC) retained metabolic features of human ccRCC and engaged in oxidative and reductive glutamine metabolism.
View Article and Find Full Text PDFDespite a growing body of knowledge about the genomic landscape of Ewing sarcoma, translation of basic discoveries into targeted therapies and significant clinical gains has remained elusive. Recent insights have revealed that the oncogenic transcription factor EWS-FLI1 can impact Ewing sarcoma cellular metabolism, regulating expression of 3-phosphoglycerate dehydrogenase (PHGDH), the first enzyme in serine synthesis. Here, we have examined the importance of serine metabolism in Ewing sarcoma tumorigenesis and evaluated the therapeutic potential of targeting serine metabolism in preclinical models of Ewing sarcoma.
View Article and Find Full Text PDFGenomic diversity among melanoma tumors limits durable control with conventional and targeted therapies. Nevertheless, pathologic activation of the ERK1/2 pathway is a linchpin tumorigenic mechanism associated with the majority of primary and recurrent disease. Therefore, we sought to identify therapeutic targets that are selectively required for tumorigenicity in the presence of pathologic ERK1/2 signaling.
View Article and Find Full Text PDFModern cancer treatment employs many effective chemotherapeutic agents originally discovered from natural sources. The cyclic depsipeptide didemnin B has demonstrated impressive anticancer activity in preclinical models. Clinical use has been approved but is limited by sparse patient responses combined with toxicity risk and an unclear mechanism of action.
View Article and Find Full Text PDF