Publications by authors named "Tracy R Keeney"

An important precondition for the successful development of diagnostic assays of cerebrospinal fluid (CSF) biomarkers of age-related neurodegenerative diseases is an understanding of the dynamic nature of the CSF proteome during the normal aging process. In this study, a novel proteomic technology was used to quantify hundreds of proteins simultaneously in the CSF from 90 cognitively normal adults 21 to 85 years of age. SomaLogic's highly multiplexed proteomic platform can measure more than 800 proteins simultaneously from small volumes of biological fluids using novel slow off-rate modified aptamer (SOMAmer) protein affinity reagents with sensitivity, specificity, and dynamic ranges that meet or exceed those of enzyme-linked immunosorbent assays.

View Article and Find Full Text PDF

Recently, we reported a SOMAmer-based, highly multiplexed assay for the purpose of biomarker identification. To enable seamless transition from highly multiplexed biomarker discovery assays to a format suitable and convenient for diagnostic and life-science applications, we developed a streamlined, plate-based version of the assay. The plate-based version of the assay is robust, sensitive (sub-picomolar), rapid, can be highly multiplexed (upwards of 60 analytes), and fully automated.

View Article and Find Full Text PDF

Background: The interrogation of proteomes ("proteomics") in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.

Methodology/principal Findings: We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (~100 fM-1 µM), and 5% median coefficient of variation.

View Article and Find Full Text PDF

Blood-based protein biomarkers hold great promise to advance medicine with applications that detect and diagnose diseases and aid in their treatment. We are developing such applications with our proteomics technology that combines high-content with low limits of detection. Biomarker discovery relies heavily on archived blood sample collections.

View Article and Find Full Text PDF