Publications by authors named "Tracy Popowics"

Cell-laden hydrogel constructs suspended between pillars are powerful tools for modeling tissue structure and physiology, though current fabrication techniques often limit them to uniform compositions. In contrast, tissues are complex in nature with spatial arrangements of cell types and extracellular matrices. Thus, we present Suspended Tissue Open Microfluidic Patterning (STOMP), which utilizes a removable, open microfluidic patterning channel to pattern multiple spatial regions across a single suspended tissue.

View Article and Find Full Text PDF

The incisor teeth in pigs, Sus scrofa, function in association with a disc-shaped snout to explore the environment for potential food. Understanding how mechanical loading applied to the tooth deforms the periodontal ligament (PDL) is important to determining the role of periodontal mechanoreceptors during food exploration and feeding. The objective of this study was to use fiber Bragg (FBG) sensors to measure strain in vivo within the PDL space of pig incisors.

View Article and Find Full Text PDF

The purpose of this study is to determine whether in-fiber Bragg grating (FBG) sensors detect changes within the periodontal ligament (PDL) of ex-vivo swine tooth-PDL-bone complex (TPBC) when manipulating fluid content. Recording strain will allow for a better understanding of the biomechanics of viscoelastic load transfer from the tooth to the PDL during chewing and/or orthodontic tooth movement, as well as replication of these dynamics in regenerated PDL tissues. FBG sensors placed within the PDL of swine incisor teeth were used to measure strain resulting from an intrusive load.

View Article and Find Full Text PDF

Cranial sutures are complex soft tissue structures whose mechanics are often studied due to their link with bone growth in the skull. Researchers will often use a cross-sectional two-dimensional slice to define suture geometry when studying morphometry and/or mechanical response to loading. However, using a single cross section neglects the full suture complexity and may introduce significant errors when defining their form.

View Article and Find Full Text PDF

The Periodontal Ligament (PDL) is a complex connective tissue that anchors a tooth to the surrounding alveolar bone. The small size and complex geometry of the PDL space within an intact tooth-PDL-bone complex (TPBC) limits strain measurements. An in-fiber Bragg grating (FBG) sensor offers potential for such measurements due to its small size.

View Article and Find Full Text PDF

The role of hyaluronan (HA) in periodontal healing has been speculated via its interaction with the CD44 receptor. While HA-CD44 interactions have previously been implicated in numerous cell types; effect and mechanism of exogenous HA on periodontal ligament (PDL) cells is less clear. Herein, we examine the effect of exogenous HA on contractility and migration in human and murine PDL cells using arrays of microposts and time-lapse microscopy.

View Article and Find Full Text PDF

The development of the mandibular symphysis in late fetal and postnatal pigs, Sus scrofa dom. (n = 17), was studied as a model for the early fusing symphysis of anthropoid primates, including humans. The suture-like ligaments occurring in species that retain a mobile symphysis are not present in the pig.

View Article and Find Full Text PDF

Background/aim: Traumatic intrusion of incisor teeth occurs frequently in young children, as well as in teens and adults; however, the biological mechanisms promoting negative sequelae or recovery are not well understood (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:493 and Vital Health Stat 11 2007;248:1). Modeling intrusive trauma and post-traumatic healing in an animal model offers the opportunity to define these biological mechanisms and to inform the design of treatments. The objective of this study was to investigate the pig, Sus scrofa, as a model for intrusive trauma, using an in vitro approach.

View Article and Find Full Text PDF

The development of alveolar bone adjacent to the tooth root during tooth eruption is not well understood. This study tested the hypothesis that predominantly woven bone forms adjacent to tooth roots during tooth eruption, but that this immature structure transitions to lamellar bone when the tooth comes into function. Additionally, bone resorption was predicted to play a key role in transitioning immature bone to more mature, load-bearing tissue.

View Article and Find Full Text PDF

Objectives: this study investigated the effects of growth and tooth loading on the structural adaptation of the developing alveolar bone adjacent to the tooth root as the tooth erupted into function. Growth and occlusal function were expected to lead to increased alveolar bone density. Meanwhile, the supporting alveolar bone was expected to develop a dominant trabecular orientation (anisotropy) only after occlusal loading.

View Article and Find Full Text PDF

Substantial advancements have been made in defining the cells and molecular signals that guide tooth crown morphogenesis and development. As a result, very encouraging progress has been made in regenerating crown tissues by using dental stem cells and recombining epithelial and mesenchymal tissues of specific developmental ages. To date, attempts to regenerate a complete tooth, including the critical periodontal tissues of the tooth root, have not been successful.

View Article and Find Full Text PDF

The nasofrontal suture links the nasal complex with the braincase and is subject to compressive strain during mastication and (theoretically) tensile strain during growth of nasal soft tissues. The suture's ability to transmit compressive and tensile loads therefore affects both cranioskeletal stress distribution and growth. This study investigated the in vitro viscoelastic and failure properties of the nasofrontal suture in the pig, Sus scrofa.

View Article and Find Full Text PDF

An ideal goal of oral-craniofacial dental reconstructive therapy is to establish treatment modalities that predictably restore functional tissues. One major area of focus has been in the area of dental materials with marked improvements in the design of materials used to restore teeth/periodontium/bone lost as a consequence of disease or disorders. With advances in understanding the cell and molecular controls for development and regeneration of tooth structures, it is now possible to consider therapies that promote regeneration of lost tissues, along with replacement of these tissues.

View Article and Find Full Text PDF

This study investigates whether the gross morphology of mustelid and viverrid postcanine dentitions corresponds with differences in diet. For each species, the predominant foods ingested are used to form predictions of dental form and measurements of the carnassial and molar teeth determine the extent of shearing and crushing surfaces on the postcanine teeth. Principal components analysis distinguishes species according to morphological differences in the dentition and these differences are compared with predictions of dental form based on diet.

View Article and Find Full Text PDF