Purpose: MRI-guidance of cardiac catheterization is currently performed using one or multiple 2D imaging planes, which may be suboptimal for catheter navigation, especially in patients with complex anatomies. The purpose of the work was to develop a robust real-time 3D catheter tracking method and 3D visualization strategy for improved MRI-guidance of cardiac catheterization procedures.
Methods: A fast 3D tracking technique was developed using continuous acquisition of two orthogonal 2D-projection images.
Introduction: Magnetic Resonance Imaging (MRI) is a promising alternative to standard x-ray fluoroscopy for the guidance of cardiac catheterization procedures as it enables soft tissue visualization, avoids ionizing radiation and provides improved hemodynamic data. MRI-guided cardiac catheterization procedures currently require frequent manual tracking of the imaging plane during navigation to follow the tip of a gadolinium-filled balloon wedge catheter, which unnecessarily prolongs and complicates the procedures. Therefore, real-time automatic image-based detection of the catheter balloon has the potential to improve catheter visualization and navigation through automatic slice tracking.
View Article and Find Full Text PDFPurpose: MR-guided cardiac catheterization procedures currently use passive tracking approaches to follow a gadolinium-filled catheter balloon during catheter navigation. This requires frequent manual tracking and repositioning of the imaging slice during navigation. In this study, a novel framework for automatic real-time catheter tracking during MR-guided cardiac catheterization is presented.
View Article and Find Full Text PDF