Publications by authors named "Tracy McKnight"

Background/objectives: Despite national efforts, smoking rates during pregnancy remain high among certain demographics, particularly American Indian/Alaska Native and younger women. This study examines the causal link between maternal smoking, maternal and fetal mortality, and social determinants of health, highlighting disparities faced by Black, Indigenous, and People of Color (BIPOC) and American Indian/Alaskan Native (AIAN) pregnant persons.

Methods: Data from various sources, including national reports and committee findings, were analyzed to assess trends in maternal smoking, mortality rates, and associated factors.

View Article and Find Full Text PDF
Article Synopsis
  • Lafora disease is a severe childhood epilepsy caused by mutations in the EPM2A or EPM2B genes, characterized by the buildup of Lafora bodies in the brain and tissues.
  • Research shows that reducing glycogen synthesis can prevent Lafora body formation and improve neurological symptoms in mouse models.
  • A new treatment, VAL-0417, a fusion of human pancreatic α-amylase with an antibody, effectively degrades Lafora bodies and restores normal metabolic functioning in Epm2a mice, showing promise as a potential therapy for Lafora disease and other difficult-to-treat epilepsies.
View Article and Find Full Text PDF

Lafora disease (LD) is a fatal juvenile epilepsy characterized by the accumulation of aberrant glucan aggregates called Lafora bodies (LBs). Delivery of protein-based therapeutics to the central nervous system (CNS) for the clearance of LBs remains a unique challenge in the field. Recently, a humanized antigen-binding fragment (hFab) derived from a murine systemic lupus erythematosus DNA autoantibody (3E10) has been shown to mediate cell penetration and proposed as a broadly applicable carrier to mediate cellular targeting and uptake.

View Article and Find Full Text PDF

The goal of this research was to elucidate the relationship between WHO 2016 molecular classifications of newly diagnosed, nonenhancing lower grade gliomas (LrGG), tissue sample histopathology, and magnetic resonance (MR) parameters derived from diffusion, perfusion, and H spectroscopic imaging from the tissue sample locations and the entire tumor. A total of 135 patients were scanned prior to initial surgery, with tumor cellularity scores obtained from 88 image-guided tissue samples. MR parameters were obtained from corresponding sample locations, and histograms of normalized MR parameters within the T2 fluid-attenuated inversion recovery lesion were analyzed in order to evaluate differences between subgroups.

View Article and Find Full Text PDF

Increased overall survival for patients with glioma brain tumours is associated with mutations in the metabolic regulator isocitrate dehydrogenase 1 (IDH1). Gliomas develop within a mechanically challenged microenvironment that is characterized by a dense extracellular matrix (ECM) that compromises vascular integrity to induce hypoxia and activate HIF1α. We found that glioma aggression and patient prognosis correlate with HIF1α levels and the stiffness of a tenascin C (TNC)-enriched ECM.

View Article and Find Full Text PDF

Individuals infected with the human immunodeficiency virus (HIV) often suffer from concomitant metabolic complications. Treatment with antiretroviral therapy has also been shown to alter the metabolism of patients. Although chemometric analysis of nuclear magnetic resonance (NMR) spectra of human sera can distinguish normal sera (HIVneg) from HIV-infected sera (HIVpos) and sera from HIV-infected patients on antiretroviral therapy (ART), quantitative analysis of the discriminating metabolites and their relationship to disease status has yet to be determined.

View Article and Find Full Text PDF

Diffuse intrinsic pontine gliomas arise almost exclusively in children, and despite advances in treatment, the majority of patients die within 2 years after initial diagnosis. Because of their infiltrative nature and anatomic location in an eloquent area of the brain, most pontine gliomas are treated without a surgical biopsy. The corresponding lack of tissue samples has resulted in a limited understanding of the underlying genetic and molecular biologic abnormalities associated with pontine gliomas, and is a substantial obstacle for the preclinical testing of targeted therapeutic agents for these tumors.

View Article and Find Full Text PDF

The apparent diffusion coefficient (ADC) determined from MR diffusion tensor imaging (DTI) has shown promise for distinguishing World Health Organization grade II astrocytoma (AS) from the more prognostically favorable grade II oligodendroglioma (OD). Since mixed oligoastrocytomas (OAs) with codeletions in chromosomes 1p and 19q confer prognoses similar to those of OD, we questioned whether a previously determined ADC-based criterion for distinguishing OD and AS would hold on an independent set of gliomas that included OA with codeleted or intact 1p/19q chromosomes. We also questioned whether the ADC is associated with the tumor microstructure.

View Article and Find Full Text PDF

Purpose: To study choline metabolism in biopsies from nonenhancing Grade 2 (AS2) and Grade 3 (AS3) astrocytomas to determine whether (1) phosphocholine (PC) dominates in AS3, and (2) PC is associated with proliferation or angiogenesis. PC and glycerophosphocholine (GPC) are involved in phospholipid metabolism that accompanies mitosis. PC is the predominant peak in Grade 4 astrocytoma (GBM) while GPC dominates in AS2.

View Article and Find Full Text PDF

Malignant astrocytic brain tumors are among the most lethal cancers. Quiescent and therapy-resistant neural stem cell (NSC)-like cells in astrocytomas are likely to contribute to poor outcome. Malignant oligodendroglial brain tumors, in contrast, are therapy sensitive.

View Article and Find Full Text PDF

Distinguishing between low-grade oligodendrogliomas (ODs) and astrocytomas (AC) is of interest for defining prognosis and stratifying patients to specific treatment regimens. The purpose of this study was to determine if the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) from diffusion imaging can help to differentiate between newly diagnosed grade II OD and AC subtypes and to evaluate the ADC and FA values for the mixed population of oligoastrocytomas (OA). Fifty-three patients with newly diagnosed grade II gliomas were studied using a 1.

View Article and Find Full Text PDF

We are developing a method for real-time magnetic resonance imaging (MRI) visualization of convection-enhanced delivery (CED) of adeno-associated viral vectors (AAV) to the primate brain. By including gadolinium-loaded liposomes (GDL) with AAV, we can track the convective movement of viral particles by continuous monitoring of distribution of surrogate GDL. In order to validate this approach, we infused two AAV (AAV1-GFP and AAV2-hAADC) into three different regions of non-human primate brain (corona radiata, putamen, and thalamus).

View Article and Find Full Text PDF

The purpose of this study is to estimate the maximum-tolerated dose (MTD) and describe toxicities and preliminary clinical effects of tipifarnib, a farnesyltransferase (FTase) inhibitor, administered concurrently with radiation therapy in children with newly diagnosed intrinsic diffuse brainstem glioma (BSG). Children >or=3 and View Article and Find Full Text PDF

Purpose: To examine the relationship between apparent diffusion coefficients (ADC) from diffusion weighted imaging (DWI) and choline levels from proton magnetic resonance spectroscopic imaging (MRSI) in newly diagnosed Grade II and IV gliomas within distinct anatomic regions.

Materials And Methods: A total of 37 patients with Grade II and 28 patients with Grade IV glioma were scanned on a 1.5T system with 3D MRSI and DWI.

View Article and Find Full Text PDF

Purpose: To investigate the association between magnetic resonance spectroscopic imaging (MRSI)-defined, metabolically abnormal tumor regions and subsequent sites of relapse in data from patients treated with radiotherapy (RT) in a prospective clinical trial.

Methods And Materials: Twenty-three examinations were performed prospectively for 9 patients with newly diagnosed glioblastoma multiforme studied in a Phase I trial combining Tipifarnib and RT. The patients underwent magnetic resonance imaging (MRI) and MRSI before treatment and every 2 months until relapse.

View Article and Find Full Text PDF

Object: The accurate diagnosis of World Health Organization Grades II and III gliomas is crucial for the effective treatment of patients with such lesions. Increased cell density and mitotic activity are histological features that distinguish Grade III from Grade II gliomas. Because increased cellular proliferation and density both contribute to the in vivo magnetic resonance (MR) spectroscopic peak corresponding to choline-containing compounds (Cho), the authors hypothesized that multivoxel MR spectroscopy might help identify the tumor regions with the most aggressive growth characteristics, which would be optimal locations for biopsy.

View Article and Find Full Text PDF

Purpose: To evaluate perfusion, diffusion, and spectroscopy values in enhancing and non-enhancing lesions for patients with newly diagnosed gliomas of different grades.

Materials And Methods: Sixty-seven patients with newly diagnosed glioma were entered into the study 20 grade II, 26 grade III and 21 grade IV. MR data were acquired at 1.

View Article and Find Full Text PDF

Drug delivery to brain tumors has long posed a major challenge. Convection-enhanced delivery (CED) has been developed as a drug delivery strategy to overcome this difficulty. Ideally, direct visualization of the tissue distribution of drugs infused by CED would assure successful delivery of therapeutic agents to the brain tumor while minimizing exposure of the normal brain.

View Article and Find Full Text PDF

Liposomes loaded with Gadoteridol, in combination with convection-enhanced delivery (CED), offer an excellent option to monitor CNS delivery of therapeutic compounds with MRI. In previous studies, we investigated possible clinical applications of liposomes to the treatment of brain tumors. In this study, up to 700 microl of Gadoteridol/rhodamine-loaded liposomes were distributed in putamen, corona radiata and brainstem of non-human primates.

View Article and Find Full Text PDF

Convection-enhanced delivery has recently entered the clinic and represents a promising new therapeutic option in the field of neurodegenerative diseases and treatment of brain tumors. Understanding of the principles governing delivery and flow of macromolecules within the CNS is still poorly understood and requires more investigation of the microanatomy and fluid dynamics of the brain. Our previously established, reflux-free convection-enhanced delivery (CED) technique and real-time imaging MR method for monitoring CED delivery of liposomes in primate CNS allowed us to closely monitor infusions of putamen.

View Article and Find Full Text PDF

Background And Purpose: After radiotherapy (RT), children with diffuse intrinsic pontine gliomas (DIPG) are followed with sequential magnetic resonance imaging (MRI). However, MRI changes do not necessarily reflect tumor progression, and therefore additional noninvasive tools are needed to improve the definition of progression vs. treatment-related changes.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is the neuroimaging method of choice for the noninvasive monitoring of patients with brain tumors due to the enormous amount of information it yields regarding the morphologic features of the lesion and surrounding parenchyma. Over the past decade, proton magnetic resonance spectroscopy (1H-MRS), which uses the same technology as MRI and can be performed during a routine clinical imaging examination, has been used to glean information about the metabolic status of the brain. Accurate interpretation of 1H-MRS data from individual patients requires an understanding of the various techniques for acquiring the data, the physiologic basis of the metabolic signatures obtained from different types of tumors, and the specificity of the technique.

View Article and Find Full Text PDF

Liposomes labeled with various markers were subjected to local-regional administration with either direct injection or convection-enhanced delivery (CED) into rodent brains and brain tumor models. Direct injection of liposomes containing attached or encapsulated fluorochromes and/or encapsulated gold particles indicated that tissue localization of liposomes could be sensitively and specifically detected in the central nervous system (CNS). When CED was applied, liposomes achieved extensive and efficient distribution within normal mouse brains.

View Article and Find Full Text PDF