Excessive production, secretion, and retention of abnormal mucus is a pathological feature of many obstructive airways diseases including asthma. Azithromycin is an antibiotic that also possesses immunomodulatory and mucoregulatory activities, which may contribute to the clinical effectiveness of azithromycin in asthma. The current study investigated these nonantibiotic activities of azithromycin in mice exposed daily to intranasal house dust mite (HDM) extract for 10 days.
View Article and Find Full Text PDFAirway smooth muscle (ASM) plays a major role in acute airway narrowing and reducing ASM thickness is expected to attenuate airway hyper-responsiveness and disease burden. There are two therapeutic approaches to reduce ASM thickness: (a) a direct approach, targeting specific airways, best exemplified by bronchial thermoplasty (BT), which delivers radiofrequency energy to the airway via bronchoscope; and (b) a pharmacological approach, targeting airways more broadly. An example of the less well-established pharmacological approach is the calcium-channel blocker gallopamil which in a clinical trial effectively reduced ASM thickness; other agents may act similarly.
View Article and Find Full Text PDFThe pulmonary myocardium is a muscular coat surrounding the pulmonary and caval veins. Although its definitive physiological function is unknown, it may have a pathological role as the source of ectopic beats initiating atrial fibrillation. How the pulmonary myocardium gains pacemaker function is not clearly defined, although recent evidence indicates that changed transcriptional gene expression networks are at fault.
View Article and Find Full Text PDFJ Pharmacol Toxicol Methods
July 2017
Introduction: The aim of this study was to develop two dynamic ex vivo airway explant systems, a perfusion-superfusion system and a ventilation-superfusion system, for the study of toxic airborne substances, such as the prevalent smoke constituent acrolein.
Methods: Mouse isolated tracheal segments were perfused with physiological media or ventilated with humidified air at 37°C to mimic dynamic flow conditions, and superfused with media over the exterior surface. At selected time points, the histological and functional integrity of segments was evaluated.
Background: The hexapeptide SLIGRL-amide activates protease-activated receptor-2 (PAR-2) and mas-related G protein-coupled receptor C11 (MRGPRC11), both of which are known to be expressed on populations of sensory nerves. SLIGRL-amide has recently been reported to inhibit influenza A (IAV) infection in mice independently of PAR-2 activation, however the explicit roles of MRGPRC11 and sensory nerves in this process are unknown. Thus, the principal aim of this study was to determine whether SLIGRL-amide-induced inhibition of influenza infection is mediated by MRGPRC11 and/or by capsaicin-sensitive sensory nerves.
View Article and Find Full Text PDFThe airway epithelium is an important source of relaxant mediators, and damage to the epithelium caused by respiratory tract viruses may contribute to airway hyperreactivity. The aim of this study was to determine whether influenza A-induced epithelial damage would modulate relaxation responses evoked by acrolein, a toxic and prevalent component of smoke. Male BALB/c mice were inoculated intranasally with influenza A/PR-8/34 (VIRUS-infected) or allantoic fluid (SHAM-infected).
View Article and Find Full Text PDFAirway sensory C-fibres express TRPA1 channels which have recently been identified as a key chemosensory receptor for acrolein, a toxic and highly prevalent component of smoke. TRPA1 likely plays an intermediary role in eliciting a range of effects induced by acrolein including cough and neurogenic inflammation. Currently, it is not known whether acrolein-induced activation of TRPA1 produces other airway effects including relaxation of mouse airway smooth muscle.
View Article and Find Full Text PDFContext: High concentrations of inspired oxygen contribute to the pathogenesis of neonatal bronchopulmonary dysplasia and adult acute respiratory distress syndrome. Animal models of hyperoxia-associated lung injury (HALI) are characterized by enhanced generation of reactive oxygen species (ROS) and an adaptive antioxidant response. ROS contribute to pathogenesis, partly through enhancing pro-inflammatory activity in macrophages.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
December 2012
Proteinase-activated receptor 2 (PAR(2)) is widely expressed in the respiratory tract and is an integral component of the host antimicrobial defense system. The principal aim of this study was to investigate the influence of a PAR(2)-activating peptide, SLIGRL, on influenza A virus (IAV)-induced pathogenesis in mice. Intranasal inoculation of BALB/c mice with influenza A/PR/8/34 virus caused time-dependent increases in the number of pulmonary leukocytes (recovered from bronchoalveolar lavage fluid), marked airway histopathology characterized by extensive epithelial cell damage, airway hyper-responsiveness to the bronchoconstrictor methacholine, and elevated levels of inflammatory chemokines (keratinocyte-derived chemokine and macrophage inflammatory protein 2) and cytokines (interferon-γ).
View Article and Find Full Text PDFJ Pharmacol Exp Ther
February 2012
The principal aim of the study was to determine the influence of influenza A virus infection on capsaicin-induced relaxation responses in mouse isolated tracheal segments and clarify the underlying mechanisms. Anesthetized mice were intranasally inoculated with influenza A/PR-8/34 virus (VIRUS) or vehicle (SHAM), and 4 days later tracheal segments were harvested for isometric tension recording and biochemical and histologic analyses. Capsaicin induced dose-dependent relaxation responses in carbachol-contracted SHAM trachea (e.
View Article and Find Full Text PDFProtease-activated receptors (PARs) are widely expressed throughout the respiratory tract, and PAR(2) has been investigated as a potential drug target for inflammatory airway diseases. The primary focus of this study was to determine the extent to which PAR(2)-activating peptides modulate lipopolysaccharide (LPS)-induced airway neutrophilia in mice and establish the underlying mechanisms. Intranasal administration of LPS induced dose- and time-dependent increases in the number of neutrophils recovered from bronchoalveolar lavage (BAL) fluid of mice.
View Article and Find Full Text PDFStimulants of protease-activated receptor (PAR)(2) promote the generation of the bronchoprotective prostanoid prostaglandin (PG) E(2) by airway epithelial cells. In contrast, glucocorticoids reduce the levels of PGE(2) in airway epithelial cell cultures by concomitantly inhibiting pathways required for PGE(2) synthesis and facilitating pathways involved in PGE(2) inactivation. The aim of this study was to determine whether glucocorticoids inhibited PAR(2)-mediated, PGE(2)-dependent responses in epithelial cell cultures, in intact airway preparations, and in whole animals.
View Article and Find Full Text PDFStimulants of protease-activated receptor-2 (PAR(2)), such as Ser-Leu-Ile-Gly-Arg-Leu-NH(2) (SLIGRL), cause airway smooth muscle relaxation via the release of the bronchodilatory prostanoid prostaglandin E(2) (PGE(2)). The principal aim of the current study was to determine whether compounds that inhibit PGE(2) reuptake by the prostaglandin transporter [bromocresol green and U46619 (9,11-dideoxy-9alpha,11alpha-methanoepoxy PGF2alpha) and PGE(2) metabolism by 15-hydroxyprostaglandin dehydrogenase (thiazolidenedione compounds rosiglitazone and ciglitazone) significantly enhanced the capacity of SLIGRL to elevate PGE(2) levels and produce relaxation in isolated segments of upper and lower mouse trachea. SLIGRL produced concentration-dependent increases in PGE(2) levels and smooth muscle relaxation, although both effects were significantly greater in lower tracheal segments than in upper tracheal segments.
View Article and Find Full Text PDFAsthma is a complex inflammatory disorder involving obstruction, constriction, oedema, remodelling and hyperresponsiveness of the airways. These effects are induced by a raft of mediators, many of which exert their actions by stimulating specific G-protein-coupled receptors linked to a signal transduction pathway involving the monomeric GTPase; rho, and a downstream effector; rho kinase. The aim of this study was to determine whether administration of a selective inhibitor of rho kinase, Y-27632, attenuates airway inflammation, bronchoconstriction and hyperresponsiveness in a murine model of acute allergic inflammation.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2002
Within the airways, endothelin-1 (ET-1) can exert a range of prominent effects, including airway smooth muscle contraction, bronchial obstruction, airway wall edema, and airway remodeling. ET-1 also possesses proinflammatory properties and contributes to the late-phase response in allergic airways. However, there is no direct evidence for the contribution of endogenous ET-1 to airway hyperresponsiveness in allergic airways.
View Article and Find Full Text PDF