Publications by authors named "Traci R Lyons"

Background: Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models.

View Article and Find Full Text PDF

Lymphatic vasculature has been shown to promote metastatic spread of breast cancer. Lymphatic vasculature, which is made up of larger collecting vessels and smaller capillaries, has specialized cell junctions that facilitate cell intravasation. Normally, these junctions are designed to collect immune cells and other cellular components for immune surveillance by lymph nodes, but they are also utilized by cancer cells to facilitate metastasis.

View Article and Find Full Text PDF

Normal developmental processes, such as those seen during embryonic development and postpartum mammary gland involution, can be reactivated by cancer cells to promote immune suppression, tumor growth, and metastatic spread. In mammalian embryos, paternal-derived antigens are at risk of being recognized as foreign by the maternal immune system. Suppression of the maternal immune response toward the fetus, which is mediated in part by the trophoblast, is critical to ensure embryonic survival and development.

View Article and Find Full Text PDF

For many solid tumors, immune checkpoint blockade therapy has become first line treatment, yet a large proportion of patients with immunologically cold tumors do not benefit due to the paucity of tumor infiltrating lymphocytes. Here we show that the orphan G Protein-Coupled Receptor 182 (GPR182) contributes to immunotherapy resistance in cancer via scavenging chemokines that are important for lymphocyte recruitment to tumors. GPR182 is primarily upregulated in melanoma-associated lymphatic endothelial cells (LECs) during tumorigenesis, and this atypical chemokine receptor endocytoses chemokines promiscuously.

View Article and Find Full Text PDF

Breast cancers that express hormonal receptors (HR) and HER2 display resistance to targeted therapy. Tumor-promotional signaling from the HER2 and estrogen receptor (ER) pathways converges at the cyclin D1 and cyclin-dependent kinases (CDK) 4 and 6 complex, which drives cell-cycle progression and development of therapeutic resistance. Therefore, we hypothesized that co-targeting of ER, HER2, and CDK4/6 may result in improved tumoricidal activity and suppress drug-resistant subclones that arise on therapy.

View Article and Find Full Text PDF

Semaphorin-7a (SEMA7A), best known as a neuroimmune molecule, plays a diverse role in many cellular processes and pathologies. Here, we show that SEMA7A promotes anoikis resistance in cultured mammary epithelial cells through integrins and activation of pro-survival kinase AKT, which led us to investigate a role for SEMA7A during postpartum mammary gland involution-a normal developmental process where cells die by anoikis. Our results reveal that SEMA7A is expressed on live mammary epithelial cells during involution, that SEMA7A expression is primarily observed in α6-integrin expressing cells, and that luminal progenitor cells, specifically, are decreased in mammary glands of SEMA7A-/- mice during involution.

View Article and Find Full Text PDF

Rab40b is a SOCS box-containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here, we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b-Cullin5 binding decreases cell motility and invasive potential and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) are small membrane particles that contribute to cancer progression and metastases by transporting biologically significant proteins and nucleic acids. They may also serve as biomarkers of various disease states or important therapeutic targets. Breast cancer EVs have the potential to change the behavior of other cells in their microenvironment.

View Article and Find Full Text PDF

Approximately 70% of all breast cancers are estrogen receptor-positive (ER breast cancer), and endocrine therapy has improved survival for patients with ER breast cancer. However, up to half of these tumors recur within 20 years. Recurrent ER breast cancers develop resistance to endocrine therapy; thus, novel targets are needed to treat recurrent ER breast cancer.

View Article and Find Full Text PDF

Breast cancer is a global health threat and cases diagnosed in women during the years after childbirth, or postpartum breast cancers (PPBCs), have high risk for metastasis. In preclinical murine models, semaphorin 7a (SEMA7A) drives the metastatic potential of postpartum mammary tumors. Thus, we hypothesize that SEMA7A may drive metastasis of PPBC in women.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAM) in the tumor microenvironment (TME) cooperate with cancer stem cells (CSC) to maintain stemness. We recently identified cluster of differentiation 44 (CD44) as a surface marker defining head and neck squamous cell carcinoma (HNSCC) CSC. PI3K-4EBP1-SOX2 activation and signaling regulate CSC properties, yet the upstream molecular control of this pathway and the mechanisms underlying cross-talk between TAM and CSC in HNSCC remain largely unknown.

View Article and Find Full Text PDF

Postpartum mammary gland involution is a mammalian tissue remodeling event that occurs after pregnancy and lactation to return the gland to the pre-pregnant state. This event is characterized by apoptosis and lysosomal-mediated cell death of the majority of the lactational mammary epithelium, followed by remodeling of the extracellular matrix, influx of immune cell populations (in particular, T helper cells, monocytes, and macrophages), and neo-lymphangiogenesis. This postpartum environment has been shown to be promotional for tumor growth and metastases and may partially account for why women diagnosed with breast cancer during the postpartum period or within 5 years of last childbirth have an increased risk of developing metastases when compared to their nulliparous counterparts.

View Article and Find Full Text PDF

Childbirth at any age confers a transient increased risk for breast cancer in the first decade postpartum and this window of adverse effect extends over two decades in women with late-age first childbirth (>35 years of age). Crossover to the protective effect of pregnancy is dependent on age at first pregnancy, with young mothers receiving the most benefit. Furthermore, breast cancer diagnosis during the 5- to 10-year postpartum window associates with high risk for subsequent metastatic disease.

View Article and Find Full Text PDF

Young women diagnosed with breast cancer (BC) have poor prognosis due to increased rates of metastasis. In addition, women diagnosed within 10 years of most recent childbirth are approximately three times more likely to develop metastasis than age- and stage-matched nulliparous women. We define these cases as postpartum BC (PPBC) and propose that the unique biology of the postpartum mammary gland drives tumor progression.

View Article and Find Full Text PDF

Background: Breast cancer is a leading cause of cancer-related death for women in the USA. Thus, there is an increasing need to investigate novel prognostic markers and therapeutic methods. Inflammation raises challenges in treating and preventing the spread of breast cancer.

View Article and Find Full Text PDF

Post-partum breast cancer patients, or breast cancer patients diagnosed within 10 years of last childbirth, are ~3-5 times more likely to develop metastasis in comparison to non-post-partum, or nulliparous, patients. Additionally, post-partum patients have increased tumor-associated lymphatic vessels and LN involvement, including when controlled for size of the primary tumor. In pre-clinical, , mouse mammary tumor models of post-partum breast cancer (PPBC), tumor growth and lymphogenous tumor cell spread occur more rapidly in post-partum hosts.

View Article and Find Full Text PDF

Postpartum involution is the process by which the lactating mammary gland returns to the pre-pregnant state after weaning. Expression of tumor-promotional collagen, upregulation of matrix metalloproteinases, infiltration of M2 macrophages, and remodeling of blood and lymphatic vasculature are all characteristics shared by the involuting mammary gland and breast tumor microenvironment. The tumor promotional nature of the involuting mammary gland is perhaps best evidenced by cases of postpartum breast cancer (PPBC), or those cases diagnosed within 10 years of most recent childbirth.

View Article and Find Full Text PDF

Importance: In women 45 years or younger, breast cancer diagnosis after childbirth increases the risk for metastasis and death, yet limited data exist to define this window of risk and associated prognostic factors.

Objective: To assess the window of elevated risk for metastasis following a postpartum breast cancer (PPBC) diagnosis and whether clinical prognostic factors are associated with the increased risk.

Design, Setting, And Participants: This multicenter cohort study conducted using cases from the Colorado Young Women's Breast Cancer Cohort diagnosed between January 1, 1981, and December 31, 2014, included 701 women 45 years or younger with stage I to III invasive breast cancer for whom parity data, including time of last childbirth, were available.

View Article and Find Full Text PDF

Postpartum mammary gland involution is a tissue remodeling event that occurs in all mammals in the absence of nursing or after weaning to return the gland to the pre-pregnant state. The tissue microenvironment created by involution has proven to be tumor promotional. Here we report that the GPI-linked protein semaphorin 7A (SEMA7A) is expressed on mammary epithelial cells during involution and use preclinical models to demonstrate that tumors induced during involution express high levels of SEMA7A.

View Article and Find Full Text PDF

Postpartum breast cancers are a highly metastatic subset of young women's breast cancers defined as breast cancers diagnosed in the postpartum period or within 5 years of last child birth. Women diagnosed with postpartum breast cancer are nearly twice as likely to develop metastasis and to die from breast cancer when compared with nulliparous women. Additionally, epidemiological studies utilizing multiple cohorts also suggest that nearly half of all breast cancers in women aged <45 qualify as postpartum cases.

View Article and Find Full Text PDF

Breast involution following pregnancy has been implicated in the high rates of metastasis observed in postpartum breast cancers; however, it is not clear how this remodeling process promotes metastasis. Here, we demonstrate that human postpartum breast cancers have increased peritumor lymphatic vessel density that correlates with increased frequency of lymph node metastases. Moreover, lymphatic vessel density was increased in normal postpartum breast tissue compared with tissue from nulliparous women.

View Article and Find Full Text PDF

Postpartum mammary gland involution has been identified as tumor-promotional and is proposed to contribute to the increased rates of metastasis and poor survival observed in postpartum breast cancer patients. In rodent models, the involuting mammary gland microenvironment is sufficient to induce enhanced tumor cell growth, local invasion, and metastasis. Postpartum involution shares many attributes with wound healing, including upregulation of genes involved in immune responsiveness and infiltration of tissue by immune cells.

View Article and Find Full Text PDF

The reduction in breast cancer risk attributed to early-age pregnancy is mediated in part by changes in the mammary epithelium. Here, we address the role of the mammary stroma in this protection. Utilizing tumor cells capable of transitioning from indolent to proliferative or invasive states, we demonstrate that mammary extracellular matrix (ECM) from parous rats (parous matrix) decreases tumor growth and impedes cellular phenotypes associated with tumor cell invasion compared with that observed using nulliparous matrix.

View Article and Find Full Text PDF

The magnitude of the breast cancer problem implores researchers to aggressively investigate prevention strategies. However, several barriers currently reduce the feasibility of breast cancer prevention. These barriers include the inability to accurately predict future breast cancer diagnosis at the individual level, the need for improved understanding of when to implement interventions, uncertainty with respect to optimal duration of treatment, and negative side effects associated with currently approved chemoprevention therapies.

View Article and Find Full Text PDF