Publications by authors named "Traci M Tanaka Hall"

The essential Drosophila RNA-binding protein Brain Tumor (Brat) represses specific genes to control embryogenesis and differentiation of stem cells. In the brain, Brat functions as a tumor suppressor that diminishes neural stem cell proliferation while promoting differentiation. Though important Brat-regulated target mRNAs have been identified in these contexts, the full impact of Brat on gene expression remains to be discovered.

View Article and Find Full Text PDF

PUF RNA-binding proteins are broadly conserved stem cell regulators. Nematode PUF proteins maintain germline stem cells (GSCs) and, with key partner proteins, repress differentiation mRNAs, including . Here we report that PUF protein FBF-2 and its partner LST-1 form a ternary complex that represses via a pair of adjacent FBF-2 binding elements (FBEs) in its 3ÚTR.

View Article and Find Full Text PDF

PUF proteins are characterized by globular RNA-binding domains. They also interact with partner proteins that modulate their RNA-binding activities. Caenorhabditis elegans PUF protein fem-3 binding factor-2 (FBF-2) partners with intrinsically disordered Lateral Signaling Target-1 (LST-1) to regulate target mRNAs in germline stem cells.

View Article and Find Full Text PDF

The Drosophila melanogaster protein Glorund (Glo) represses nanos (nos) translation and uses its quasi-RNA recognition motifs (qRRMs) to recognize both G-tract and structured UA-rich motifs within the nos translational control element (TCE). We showed previously that each of the three qRRMs is multifunctional, capable of binding to G-tract and UA-rich motifs, yet if and how the qRRMs combine to recognize the nos TCE remained unclear. Here we determined solution structures of a nos TCEI_III RNA containing the G-tract and UA-rich motifs.

View Article and Find Full Text PDF

In animals and plants, Dicer enzymes collaborate with double-stranded RNA-binding domain (dsRBD) proteins to convert precursor-microRNAs (pre-miRNAs) into miRNA duplexes. We report six cryo-EM structures of Drosophila Dicer-1 that show how Dicer-1 and its partner Loqs‑PB cooperate (1) before binding pre-miRNA, (2) after binding and in a catalytically competent state, (3) after nicking one arm of the pre-miRNA, and (4) following complete dicing and initial product release. Our reconstructions suggest that pre-miRNA binds a rare, open conformation of the Dicer‑1⋅Loqs‑PB heterodimer.

View Article and Find Full Text PDF

Deoxynucleoside triphosphate (dNTP) triphosphohydrolases (dNTPases) are important enzymes that may perform multiple functions in the cell, including regulating the dNTP pools and contributing to innate immunity against viruses. Among the homologs that are best studied are human sterile alpha motif and HD domain-containing protein 1 (SAMHD1), a tetrameric dNTPase, and the hexameric Escherichia coli dGTPase; however, it is unclear whether these are representative of all dNTPases given their wide distribution throughout life. Here, we investigated a hexameric homolog from the marine bacterium Leeuwenhoekiella blandensis, revealing that it is a dGTPase that is subject to allosteric activation by dATP, specifically.

View Article and Find Full Text PDF

In C. elegans, PUF proteins promote germline stem cell self-renewal. Their functions hinge on partnerships with two proteins that are redundantly required for stem cell maintenance.

View Article and Find Full Text PDF

Pentatricopeptide repeat (PPR) motifs are α-helical structures known for their modular recognition of single-stranded RNA sequences with each motif in a tandem array binding to a single nucleotide. Protein-only RNase P 1 (PRORP1) in Arabidopsis thaliana is an endoribonuclease that uses its PPR domain to recognize precursor tRNAs (pre-tRNAs) as it catalyzes removal of the 5'-leader sequence from pre-tRNAs with its NYN metallonuclease domain. To gain insight into the mechanism by which PRORP1 recognizes tRNA, we determined a crystal structure of the PPR domain in complex with yeast tRNAPhe at 2.

View Article and Find Full Text PDF

H/ACA small nucleolar RNAs (snoRNAs) guide pseudouridylation as part of a small nucleolar ribonucleoprotein complex (snoRNP). Disruption of H/ACA snoRNA levels in stem cells impairs pluripotency, yet it remains unclear how H/ACA snoRNAs contribute to differentiation. To determine if H/ACA snoRNA levels are dynamic during differentiation, we comprehensively profiled H/ACA snoRNA abundance in multiple murine cell types and during differentiation in three cellular models, including mouse embryonic stem cells and mouse myoblasts.

View Article and Find Full Text PDF

Nop9 is an essential factor in the processing of preribosomal RNA. Its absence in yeast is lethal, and defects in the human ortholog are associated with breast cancer, autoimmunity, and learning/language impairment. PUF family RNA-binding proteins are best known for sequence-specific RNA recognition, and most contain eight α-helical repeats that bind to the RNA bases of single-stranded RNA.

View Article and Find Full Text PDF

Spermatogenesis is a differentiation process that requires dramatic changes to DNA architecture, a process governed in part by Transition Nuclear Proteins 1 and 2 (TNP1 and TNP2). Translation of Tnp1 and Tnp2 mRNAs is temporally disengaged from their transcription. We hypothesized that RNA regulatory proteins associate specifically with Tnp mRNAs to control the delayed timing of their translation.

View Article and Find Full Text PDF

In the germline, Binding Factor (FBF) partners with LST-1 to maintain stem cells. A crystal structure of an FBF-2/LST-1/RNA complex revealed that FBF-2 recognizes a short RNA motif different from the characteristic 9-nt FBF binding element, and compact motif recognition coincided with curvature changes in the FBF-2 scaffold. Previously, we engineered FBF-2 to favor recognition of shorter RNA motifs without curvature change (Bhat et al.

View Article and Find Full Text PDF

It is essential that mRNA-binding proteins recognize specific motifs in target mRNAs to control their processing, localization, and expression. Although mRNAs are typically targets of many different regulatory factors, our understanding of how they work together is limited. In some cases, RNA-binding proteins work cooperatively to regulate an mRNA target.

View Article and Find Full Text PDF

PUF (milio/BF) RNA-binding proteins recognize distinct elements. In , PUF-8 binds to an 8-nt motif and restricts proliferation in the germline. Conversely, FBF-2 recognizes a 9-nt element and promotes mitosis.

View Article and Find Full Text PDF

Mammalian Pumilio proteins, PUM1 and PUM2, are members of the PUF family of sequence-specific RNA-binding proteins. In this review, we explore their mechanisms, regulatory networks, biological functions, and relevance to diseases. Pumilio proteins bind an extensive network of mRNAs and repress protein expression by inhibiting translation and promoting mRNA decay.

View Article and Find Full Text PDF

The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo's RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs.

View Article and Find Full Text PDF

Eukaryotes possess a vast array of RNA-binding proteins (RBPs) that affect mRNAs in diverse ways to control protein expression. Combinatorial regulation of mRNAs by RBPs is emerging as the rule. No example illustrates this as vividly as the partnership of 3 Drosophila RBPs, Pumilio, Nanos and Brain Tumor, which have overlapping functions in development, stem cell maintenance and differentiation, fertility and neurologic processes.

View Article and Find Full Text PDF

Cleavage of histone pre-mRNAs at the 3' end requires stem-loop binding protein (SLBP) and U7 snRNP that consists of U7 snRNA and a unique Sm ring containing two U7-specific proteins: Lsm10 and Lsm11. Lsm11 interacts with FLASH and together they bring a subset of polyadenylation factors to U7 snRNP, including the CPSF73 endonuclease that cleaves histone pre-mRNA. SLBP binds to a conserved stem-loop structure upstream of the cleavage site and acts by promoting an interaction between the U7 snRNP and a sequence element located downstream from the cleavage site.

View Article and Find Full Text PDF

The RNA recognition motif (RRM) is the most abundant RNA-binding domain in eukaryotes, and it plays versatile roles in RNA metabolism. Despite its abundance, diversity of RRM structure and function is generated by variations on a conserved core. Yeast Nop15 is an RRM protein that is essential for large ribosomal subunit biogenesis.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem.

View Article and Find Full Text PDF

Numerous factors direct eukaryotic ribosome biogenesis, and defects in a single ribosome assembly factor may be lethal or produce tissue-specific human ribosomopathies. Pre-ribosomal RNAs (pre-rRNAs) must be processed stepwise and at the correct subcellular locations to produce the mature rRNAs. Nop9 is a conserved small ribosomal subunit biogenesis factor, essential in yeast.

View Article and Find Full Text PDF

Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs.

View Article and Find Full Text PDF

ANE syndrome is a ribosomopathy caused by a mutation in an RNA recognition motif of RBM28, a nucleolar protein conserved to yeast (Nop4). While patients with ANE syndrome have fewer mature ribosomes, it is unclear how this mutation disrupts ribosome assembly. Here we use yeast as a model system and show that the mutation confers growth and pre-rRNA processing defects.

View Article and Find Full Text PDF

PUF and PPR proteins are two families of α-helical repeat proteins that recognize single-stranded RNA sequences. Both protein families hold promise as scaffolds for designed RNA-binding domains. A modular protein RNA recognition code was apparent from the first crystal structures of a PUF protein in complex with RNA, and recent studies continue to advance our understanding of natural PUF protein recognition (de-coding) and our ability to engineer specificity (re-coding).

View Article and Find Full Text PDF