The balance between energetic costs and acquisition in free-ranging species is essential for survival, and provides important insights regarding the physiological impact of anthropogenic disturbances on wild animals. For marine mammals such as beluga whales (Delphinapterus leucas), the first step in modeling this bioenergetic balance requires an examination of resting and active metabolic demands. Here, we used open-flow respirometry to measure oxygen consumption during surface rest and submerged swimming by trained beluga whales, and compared these measurements with those of a commonly studied odontocete, the Atlantic bottlenose dolphin (Tursiops truncatus).
View Article and Find Full Text PDFUnlike the majority of marine mammal species, Hawaiian monk seals (Neomonachus schauinslandi) and West Indian manatees (Trichechus manatus latirostris) reside exclusively in tropical or subtropical waters. Although potentially providing an energetic benefit through reduced maintenance and thermal costs, little is known about the cascading effects that may alter energy expenditure during activity, dive responses and overall energy budgets for these warm-water species. To examine this, we used open-flow respirometry to measure the energy expended during resting and swimming in both species.
View Article and Find Full Text PDFThe ability to expand the behavioral repertoire past seemingly rigid morphological features enables animals to succeed in a variety of ecological contexts. The integration of morphology, performance, and behavior produces diverse animal feeding strategies. These different strategies reflect trade-offs between specialization, prey choice, and energetic expenditure, which have important consequences for understanding individual and population-level flexibility in response to environmental change.
View Article and Find Full Text PDFAnimals use diverse feeding strategies to capture and consume prey, with many species switching between strategies to accommodate different prey. Many marine animals exhibit behavioral flexibility when feeding to deal with spatial and temporal heterogeneity in prey resources. However, little is known about flexibility in the feeding behavior of many large marine predators.
View Article and Find Full Text PDFExponential increases in hydrodynamic drag and physical exertion occur when swimmers move quickly through water, and underlie the preference for relatively slow routine speeds by marine mammals regardless of body size. Because of this and the need to balance limited oxygen stores when submerged, flight (escape) responses may be especially challenging for this group. To examine this, we used open-flow respirometry to measure the energetic cost of producing a swimming stroke during different levels of exercise in bottlenose dolphins ().
View Article and Find Full Text PDFSuperimposed on inherently high basal metabolic demands, the additional energetic requirements of reproduction can push female sea otters beyond physiological limits. Indeed, the resulting energy imbalance contributes to disproportionately high rates of mortality at the end of lactation in this species. To examine and quantify metabolic changes associated with reproduction, we measured the resting metabolic rate (RMR) of a female sea otter across gestation, lactation and non-reproductive periods.
View Article and Find Full Text PDFUnlike their terrestrial ancestors, marine mammals routinely confront extreme physiological and physical challenges while breath-holding and pursuing prey at depth. To determine how cetaceans and pinnipeds accomplish deep-sea chases, we deployed animal-borne instruments that recorded high-resolution electrocardiograms, behaviour and flipper accelerations of bottlenose dolphins (Tursiops truncatus) and Weddell seals (Leptonychotes weddellii) diving from the surface to >200 m. Here we report that both exercise and depth alter the bradycardia associated with the dive response, with the greatest impacts at depths inducing lung collapse.
View Article and Find Full Text PDFPumas (Puma concolor) live in diverse, often rugged, complex habitats. The energy they expend for hunting must account for this complexity but is difficult to measure for this and other large, cryptic carnivores. We developed and deployed a physiological SMART (species movement, acceleration, and radio tracking) collar that used accelerometry to continuously monitor energetics, movements, and behavior of free-ranging pumas.
View Article and Find Full Text PDFA hallmark of the dive response, bradycardia, promotes the conservation of onboard oxygen stores and enables marine mammals to submerge for prolonged periods. A paradox exists when marine mammals are foraging underwater because activity should promote an elevation in heart rate (f(H)) to support increased metabolic demands. To assess the effect of the interaction between the diving response and underwater activity on f(H), we integrated interbeat f(H) with behavioral observations of adult bottlenose dolphins diving and swimming along the coast of the Bahamas.
View Article and Find Full Text PDF