Publications by authors named "Traci A Brown"

Early life changes in the microbiome contribute to the development of allergic asthma, but little is known about the importance of the microbiome for other forms of asthma. Ozone is a nonatopic asthma trigger that causes airway hyperresponsiveness and neutrophil recruitment to the lungs. The purpose of this study was to test the hypothesis that early life perturbations in the gut microbiome influence subsequent responses to ozone.

View Article and Find Full Text PDF

We have previously reported that the mouse gut microbiome contributes to pulmonary responses to ozone, a common asthma trigger, and that short-chain fatty acids, end products of bacterial fermentation, likely contribute to this role of the microbiome. A growing body of evidence indicates that there are sex-related differences in gut microbiota and these differences can have important functional consequences. The purpose of this study was to determine whether there are sex-related differences in the impact of the gut microbiota on pulmonary responses to ozone.

View Article and Find Full Text PDF

Previous reports demonstrate that the microbiome impacts allergic airway responses, including airway hyperresponsiveness, a characteristic feature of asthma. Here we examined the role of the microbiome in pulmonary responses to a nonallergic asthma trigger, ozone. We depleted the microbiota of conventional mice with either a single antibiotic (ampicillin, metronidazole, neomycin, or vancomycin) or a cocktail of all four antibiotics given via the drinking water.

View Article and Find Full Text PDF

Prenatal and early-life environmental tobacco smoke (ETS) exposure can induce epigenetic alterations associated with inflammation and respiratory disease. The objective of this study was to address the long-term epigenetic consequences of perinatal ETS exposure on latent respiratory disease risk, which are still largely unknown. C57BL/6 mice were exposed to prenatal and early-life ETS; offspring lung pathology, global DNA, and gene-specific methylation were measured at two adult ages.

View Article and Find Full Text PDF

Asbestos in combination with tobacco smoke exposure reportedly leads to more severe physiological consequences than asbestos alone; limited data also show an increased disease risk due to environmental tobacco smoke (ETS) exposure. Environmental influences during gestation and early lung development can result in physiological changes that alter risk for disease development throughout an individual's lifetime. Therefore, maternal lifestyle may impact the ability of offspring to subsequently respond to environmental insults and alter overall disease susceptibility.

View Article and Find Full Text PDF

Use of multi-walled carbon nanotubes (MWCNT) is growing which increases occupational exposures to these materials. Their toxic potential makes it important to have an in-depth understanding of the inflammation and disease that develops due to exposure. Epigenetics is one area of interest that has been quickly developing to assess disease processes due to its ability to change gene expression and thus the lung environment after exposure.

View Article and Find Full Text PDF