Publications by authors named "Trachtulec Z"

Article Synopsis
  • The cytokine TNF can lead to a type of cell death influenced by RIPK1, but this can be suppressed by two proteins, TANK and AZI2, which help regulate TBK1 kinase activation.
  • Mice lacking both TANK and AZI2 experience severe health issues like multi-organ inflammation and early death, which can be mitigated by disabling TNFR1 or using a modified RIPK1.
  • TANK and AZI2 work together in the TNF receptor signaling process, binding to different components at distinct times to maintain TBK1 activity and protect against excessive inflammation.
View Article and Find Full Text PDF

Aneuploidy (abnormal chromosome number) accompanies reduced ovarian function in humans and mice, but the reasons behind this concomitance remain underexplored. Some variants in the human gene encoding histone-3-lysine-4,36-trimethyltransferase PRDM9 are associated with aneuploidy, and other variants with ovarian function reduced by premature ovarian failure (POF), but no link between POF and aneuploidy has been revealed. SHR/OlaIpcv rat females lacking PRDM9 manifest POF-a reduced follicle number, litter size, and reproductive age.

View Article and Find Full Text PDF

Background: Vertebrate meiotic recombination events are concentrated in regions (hotspots) that display open chromatin marks, such as trimethylation of lysines 4 and 36 of histone 3 (H3K4me3 and H3K36me3). Mouse and human PRDM9 proteins catalyze H3K4me3 and H3K36me3 and determine hotspot positions, whereas other vertebrates lacking PRDM9 recombine in regions with chromatin already opened for another function, such as gene promoters. While these other vertebrate species lacking PRDM9 remain fertile, inactivation of the mouse Prdm9 gene, which shifts the hotspots to the functional regions (including promoters), typically causes gross fertility reduction; and the reasons for these species differences are not clear.

View Article and Find Full Text PDF

Bardet-Biedl Syndrome (BBS) is a pleiotropic genetic disease caused by the dysfunction of primary cilia. The immune system of patients with ciliopathies has not been investigated. However, there are multiple indications that the impairment of the processes typically associated with cilia may have influence on the hematopoietic compartment and immunity.

View Article and Find Full Text PDF

Reduced fertility of male mouse hybrids relative to their parents, or hybrid sterility, is governed by the hybrid sterility 1 (Hst1) locus. Rescue experiments with transgenes carrying sequences within or near Hst1 manifested that Hst1 contains the gene encoding meiosis-specific histone methyltransferase PRDM9. The Prdm9 gene is responsible for partial meiotic arrest, testicular atrophy, and low sperm count in (C57BL/6J x PWD)F1 mouse hybrids.

View Article and Find Full Text PDF

A hallmark of meiosis is the rearrangement of parental alleles to ensure genetic diversity in the gametes. These chromosome rearrangements are mediated by the repair of programmed DNA double-strand breaks (DSBs) as genetic crossovers between parental homologs. In mice, humans, and many other mammals, meiotic DSBs occur primarily at hotspots, determined by sequence-specific binding of the PRDM9 protein.

View Article and Find Full Text PDF

PRDM9 is a protein with histone-3-methyltransferase activity, which specifies the sites of meiotic recombination in mammals. Deficiency of the Prdm9 gene in the laboratory mouse results in complete arrest of the meiotic prophase of both sexes. Moreover, the combination of certain PRDM9 alleles from different mouse subspecies causes hybrid sterility, e.

View Article and Find Full Text PDF

Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic recombination during meiosis enhances genetic diversity, removers harmful alleles, and ensures proper separation of chromatids.
  • The PRDM9 gene, which varies among individuals, plays a crucial role by determining where recombination occurs through its hotspot activation.
  • In heterozygous individuals, different PRDM9 variants can influence each other's hotspot activities, leading to allelic competition and potential changes in recombination efficiency.
View Article and Find Full Text PDF

PR-domain 9 (Prdm9) is the first hybrid sterility gene identified in mammals. The incompatibility between Prdm9 from Mus musculus domesticus (Mmd; the B6 strain) and the Hstx2 region of chromosome (Chr) X from M. m.

View Article and Find Full Text PDF

The Dobzhansky-Muller model of incompatibilities explains reproductive isolation between species by incorrect epistatic interactions. Although the mechanisms of speciation are of great interest, no incompatibility has been characterized at the gene level in mammals. The Hybrid sterility 1 gene (Hst1) participates in the arrest of meiosis in F(1) males of certain strains from two Mus musculus subspecies, e.

View Article and Find Full Text PDF

Speciation genes restrict gene flow between the incipient species and related taxa. Three decades ago, we mapped a mammalian speciation gene, hybrid sterility 1 (Hst1), in the intersubspecific hybrids of house mouse. Here, we identify this gene as Prdm9, encoding a histone H3 lysine 4 trimethyltransferase.

View Article and Find Full Text PDF

Consomic (chromosome substitution) strains (CSs) represent the most recent addition to the mouse genetic resources aimed to genetically analyze complex trait loci (QTLs). In this study, we report the development of a set of 28 mouse intersubspecific CSs. In each CS, we replaced a single chromosome of the C57BL/6J (B6) inbred strain (mostly Mus m.

View Article and Find Full Text PDF

Extensive linkage disequilibrium among classical laboratory strains represents an obstacle in the high-resolution haplotype mapping of mouse quantitative trait loci (QTL). To determine the potential of wild-derived mouse strains for fine QTL mapping, we constructed a haplotype map of a 250-kb region of the t-complex on chromosome 17 containing the Hybrid sterility 1 (Hst1) gene. We resequenced 33 loci from up to 80 chromosomes of five mouse (sub)species.

View Article and Find Full Text PDF

Background: The programmed cell death 2 (Pdcd2) gene on mouse chromosome 17 was evaluated as a member of a highly conserved synteny, a candidate for an imprinted locus, and a candidate for the Hybrid sterility 1 (Hst1) gene.

Results: New mouse transcripts were identified at this locus: an alternative Pdcd2 mRNA skipping the last two coding exons and two classes of antisense RNAs. One class of the antisense RNA overlaps the alternative exon and the other the entire Pdcd2 gene.

View Article and Find Full Text PDF

Three orthologous genes encoding programmed cell death 2 (PDCD2), TATA-binding protein (TBP), and proteasomal subunit C5 (PSMB1) proteins have been shown previously to be nonrandomly distributed in both mammalian and invertebrate genomes. Here we analyze a conserved synteny of the PDCD2, TBP, and PSMB1 orthologs in four nonmammalian vertebrates. Homologous genes of the chicken, zebrafish, fugu, and Tetraodon nigroviridis were identified.

View Article and Find Full Text PDF

The synteny conservation of the members of eukaryotic operons was investigated by mapping their orthologues in Drosophila, human, and other eukaryotes. While the homologues of the operon members are generally not linked, some examples of highly conserved syntenies were found. The most significant synteny involves two members of one C.

View Article and Find Full Text PDF

Four mouse genes, programmed cell death 2 (Pdcd2 or Rp8), brain protein 44-like (Brp441), bystin-like (Bysl), and uncoordinated-93-like (Unc931) genes were mapped to Chromosome (Chr) 17. The orthologs of these and other mouse Chr 17 genes are localized on Chr III of Caenorhabditis elegans, thus defining a syntenic group conserved between vertebrates and nonvertebrates. In human, mouse, and snake, the PDCD2-, and TATA-binding protein (TBP)-encoding genes are adjacent tail-to-tail.

View Article and Find Full Text PDF

The recognition of mammalian genes encoded within a mouse yeast artificial chromosome (YAC) by the yeast transcription and RNA processing machinery was investigated. Transcripts from five genes known to be encoded by the YAC were all found in the total yeast RNA. Of 12 mouse introns assayed, six were correctly spliced by the yeast.

View Article and Find Full Text PDF

The TATA-binding protein (TBP) is a factor required for the transcription of all classes of eukaryotic genes. Here, we demonstrate that in the mouse the TBP-encoding gene (Tbp) resides next to the proteasomal subunit C5-encoding gene (Psmb1). The genes are located on mouse chromosome 17 in the t complex within the Hybrid sterility 1 (Hst1) region.

View Article and Find Full Text PDF

The Hybrid sterility 1 (Hst1) gene causes male infertility in crosses between certain inbred strains of the laboratory and wild mouse, Mus musculus. To identify the causative gene, we have searched YAC clones encompassing the Hst1 region for testis-expressed sequences, using the cDNA selection method. We isolated 12 non-overlapping cDNA clones, sequenced them, and placed them on a physical map based on the analysis of YAC clones and total genomic DNA.

View Article and Find Full Text PDF