Arbuscular mycorrhizal fungi (AMF) are promoted as commercial bioinoculants for sustainable agriculture. Little is known, however, about the survival of AMF inoculants in soil and their impacts on native or pre-established AMF communities in root tissue. The current study was designed to assess the stability of pre-existing/nursery-derived AMF in apple rootstocks after being planted into soil containing a known community of AMF with a limited number of species.
View Article and Find Full Text PDFThe exchange of metabolites (i.e., metabolic interactions) between bacteria in the rhizosphere determines various plant-associated functions.
View Article and Find Full Text PDFThe effect of plant cultivar on the degree of mycorrhization and the benefits mediated by arbuscular mycorrhizal fungi (AMF) have been documented in many crops. In apple, a wide variety of rootstocks are commercially available; however, it is not clear whether some rootstock genotypes are more susceptible to mycorrhization than others and/or whether AMF species identity influences rootstock compatibility. This study addresses these questions by directly testing the ability/efficacy of four different AMF species (, , or ) to colonize a variety of commercially available Geneva apple rootstock genotypes (G.
View Article and Find Full Text PDFBackground: The design of ecologically sustainable and plant-beneficial soil systems is a key goal in actively manipulating root-associated microbiomes. Community engineering efforts commonly seek to harness the potential of the indigenous microbiome through substrate-mediated recruitment of beneficial members. In most sustainable practices, microbial recruitment mechanisms rely on the application of complex organic mixtures where the resources/metabolites that act as direct stimulants of beneficial groups are not characterized.
View Article and Find Full Text PDFReplant diseases are a common occurrence in perennial cropping systems. In apple, progress toward the development of a universally effective disease management strategy, beyond the use of broad-spectrum soil fumigants, is impeded by inconsistencies in defining replant disease etiology. A preponderance of evidence attributes apple replant disease to plant-induced changes in the soil microbiome including the proliferation of soilborne plant pathogens.
View Article and Find Full Text PDFBrassicaceae seed meal (SM) soil amendment has been utilized as an effective strategy to control the biological complex of organisms, which includes oomycetes, fungi, and parasitic nematodes, that incites the phenomenon termed apple replant disease. Soil-borne disease control attained in response to Brassicaceae SM amendment is reliant on multiple chemical and biological attributes, including specific SM-generated modifications to the soil/rhizosphere microbiome. In this study, we conducted a comparative analyses of apple root gene expression as influenced by rootstock genotype combined with a seed meal (SM) soil amendment.
View Article and Find Full Text PDF