The crypt-villus structure of the small intestine serves as an essential protective barrier, with its integrity monitored by the gut's sensory system. Enterochromaffin (EC) cells, which are rare sensory epithelial cells that release serotonin (5-HT), surveil the mucosal environment and signal both within and outside the gut. However, it remains unclear whether EC cells in intestinal crypts and villi respond to different stimuli and elicit distinct responses.
View Article and Find Full Text PDFItch induces scratching that removes irritants from the skin, whereas pain initiates withdrawal or avoidance of tissue damage. While pain arises from both the skin and viscera, we investigated whether pruritogenic irritant mechanisms also function within visceral pathways. We show that subsets of colon-innervating sensory neurons in mice express, either individually or in combination, the pruritogenic receptors Tgr5 and the Mas-gene-related GPCRs Mrgpra3 and Mrgprc11.
View Article and Find Full Text PDFα-Conotoxins are disulfide-bonded peptides from cone snail venoms and are characterized by their affinity for nicotinic acetylcholine receptors (nAChR). Several α-conotoxins with distinct selectivity for nAChR subtypes have been identified as potent analgesics in animal models of chronic pain. However, a number of α-conotoxins have been shown to inhibit N-type calcium channel currents in rodent dissociated dorsal root ganglion (DRG) neurons via activation of G protein-coupled GABA receptors (GABAR).
View Article and Find Full Text PDFBackground And Purpose: Patients with irritable bowel syndrome suffer from chronic visceral pain (CVP) and limited analgesic therapeutic options are currently available. We have shown that α-conotoxin Vc1.1 induced activation of GABA receptors on the peripheral endings of colonic afferents and reduced nociceptive signalling from the viscera.
View Article and Find Full Text PDFDietary, microbial, and inflammatory factors modulate the gut-brain axis and influence physiological processes ranging from metabolism to cognition. The gut epithelium is a principal site for detecting such agents, but precisely how it communicates with neural elements is poorly understood. Serotonergic enterochromaffin (EC) cells are proposed to fulfill this role by acting as chemosensors, but understanding how these rare and unique cell types transduce chemosensory information to the nervous system has been hampered by their paucity and inaccessibility to single-cell measurements.
View Article and Find Full Text PDFAim: Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice.
View Article and Find Full Text PDFAim: Gastric vagal afferents are activated in response to mechanical stimulation, an effect attenuated by neuropeptide W (NPW) in 20-week-old female mice. In this study we aimed to determine whether there were age and sex dependent effects of NPW on gastric vagal afferent mechanosensitivity.
Methods: An in vitro gastro-oesophageal preparation was used to determine the effect of NPW on gastric vagal afferent mechanosensitivity from 8 and 20-week-old male and female C57BL/6 mice.
Neuronal nitric oxide (NO) plays an important role in gastric motor activity and modulates the mechanosensitivity of gastro-oesophageal vagal afferents. Effects of NO on food intake are dependent on feeding status. We sought to determine the effect of NO on gastro-oesophageal vagal afferent activity in the normally fed and food-restricted states and the second messenger pathways mediating these effects.
View Article and Find Full Text PDFEnergy intake is strongly influenced by vagal afferent signals from the stomach, and is also modulated by leptin. Leptin may be secreted from gastric epithelial cells, so we aimed to determine the direct effect of leptin on gastric vagal afferents under different feeding conditions. Female C57BL/6 mice were fed standard laboratory diet, high-fat diet or were food restricted.
View Article and Find Full Text PDFAfferent signals from the stomach play an important role in inhibition of food intake during a meal. The gastric hormone ghrelin can influence gastric satiety signalling by altering the sensitivity of gastric vagal afferents. Changes in diet, including food restriction and high fat diet (HFD) alter satiety signalling.
View Article and Find Full Text PDFBackground & Aims: The transient receptor potential (TRP) channel family includes transducers of mechanical and chemical stimuli for visceral sensory neurons. TRP ankyrin 1 (TRPA1) is implicated in inflammatory pain; it interacts with G-protein-coupled receptors, but little is known about its role in the gastrointestinal (GI) tract. Sensory information from the GI tract is conducted via 5 afferent subtypes along 3 pathways.
View Article and Find Full Text PDFNitric oxide (NO) plays important roles in CNS and smooth muscle function. Here we reveal an additional function in peripheral sensory transmission. We hypothesized that endogenous NO modulates the function of gastrointestinal vagal afferent endings.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2008
Despite universal use of opioids in the clinic to inhibit pain, there is relatively little known of their peripheral actions on sensory nerve endings, where in fact they may be better targeted with more widespread applications. Here we show differential effects of mu-, kappa-, and delta-opioids on mechanosensitive ferret esophageal vagal afferent endings investigated in vitro. The effects of selective agonists [d-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin (DAMGO), 2-(3, 4-dichlorophenyl)-N-methyl-N-[(1S)-1phenyl-2-(1-pyrrolidinyl) ethyl] acetamide hydrochlorine (ICI 199441), and (+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC-80), respectively, on mechanosensory stimulus-response functions were quantified.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
May 2007
Ghrelin is a peptide released from gastric endocrine cells that has an orexigenic effect via a vagal pathway. Here we determine the effect of ghrelin on mechanosensitivity of upper-intestinal vagal afferent fibers in ferret and mouse. The responses of gastroesophageal vagal afferents to graded mechanical stimulation were determined in vitro before and during application of ghrelin to their peripheral endings.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
February 2007
Metabotropic glutamate receptors (mGluR) are classified into group I, II, and III mGluR. Group I (mGluR1, mGluR5) are excitatory, whereas group II and III are inhibitory. mGluR5 antagonism potently reduces triggering of transient lower esophageal sphincter relaxations and gastroesophageal reflux.
View Article and Find Full Text PDFBackground And Aims: Inhibitory G-protein-coupled receptors have demonstrated potential in treatment of gastroesophageal reflux disease (GERD) through actions on vagal afferent signaling. Metabotropic glutamate receptors (mGluR) belong to this receptor family and have great pharmacologic and molecular diversity, with 8 subtypes. We investigated mGluR in the vagal system of humans and other species.
View Article and Find Full Text PDFThe neuropeptide galanin is found in the central and peripheral nervous systems. It may have excitatory or inhibitory actions via three subtypes of G-protein-coupled receptor, and it modulates the mechanosensitivity of somatic sensory fibres. We aimed to determine if galanin also modulates vagal afferent mechanosensitivity, and to localize endogenous sources.
View Article and Find Full Text PDF