Publications by authors named "Tracey Leedom"

CHEK2 mutations are associated with increased cancer risks, including breast; however, published risk estimates are limited to those conferred by CHEK2 founder mutations, presenting uncertainty in risk assessment for carriers of other CHEK2 mutations. This study aimed to assess phenotypes and molecular characteristics of CHEK2 mutation carriers (CHEK2 + s) from a multi-gene panel testing (MGPT) cohort, focusing on comparing phenotypes of founder and non-founder CHEK2 + s. Clinical histories and molecular results were reviewed from 45,879 patients who underwent MGPT including CHEK2 at a commercial laboratory.

View Article and Find Full Text PDF

Background: Revised NCCN guidelines recommend that women ≤60 years with triple-negative breast cancer (TNBC) be referred for consideration of genetic counseling. Small, homogeneous samples have limited evaluation of BRCA mutation prevalence among different ethnicities affected by TNBC subtype. We sought to determine whether the prevalence of BRCA mutations within a TNBC cohort differs by demographic factors.

View Article and Find Full Text PDF

Juvenile polyposis (JP) and hereditary hemorrhagic telangiectasia (HHT) are clinically distinct diseases caused by mutations in SMAD4 and BMPR1A (for JP) and endoglin and ALK1 (for HHT). Recently, a combined syndrome of JP-HHT was described that is also caused by mutations in SMAD4. Although both JP and JP-HHT are caused by SMAD4 mutations, a possible genotype:phenotype correlation was noted as all of the SMAD4 mutations in the JP-HHT patients were clustered in the COOH-terminal MH2 domain of the protein.

View Article and Find Full Text PDF

Cerebral cavernous malformations (CCMs) are vascular abnormalities of the brain that can result in hemorrhagic stroke and seizures. Familial forms of CCM are inherited in an autosomal-dominant fashion, and three CCM genes have been identified. We recently determined that large genomic deletions in the CCM2 gene represent 22% of mutations in a large CCM cohort from the USA.

View Article and Find Full Text PDF

Cerebral cavernous malformations (CCMs) are vascular abnormalities of the brain that can result in a variety of neurological disabilities, including hemorrhagic stroke and seizures. Mutations in the gene KRIT1 are responsible for CCM1, mutations in the gene MGC4607 are responsible for CCM2, and mutations in the gene PDCD10 are responsible for CCM3. DNA sequence analysis of the known CCM genes in a cohort of 63 CCM-affected families showed that a high proportion (40%) of these lacked any identifiable mutation.

View Article and Find Full Text PDF

Cerebral cavernous malformations (CCMs) are vascular abnormalities of the brain that can result in a variety of neurological disabilities, including stroke and seizures. Linkage analyses using autosomal dominant families manifesting CCMs have identified three different causative loci on chromosomes 7q21.2 (CCM1), 7p13 (CCM2), and 3q25.

View Article and Find Full Text PDF

Cerebral cavernous malformations (CCMs) are congenital vascular anomalies of the central nervous system that can result in hemorrhagic stroke, seizures, recurrent headaches, and focal neurologic deficits. Mutations in the gene KRIT1 are responsible for type 1 CCM (CCM1). We report that a novel gene, MGC4607, exhibits eight different mutations in nine families with type 2 CCM (CCM2).

View Article and Find Full Text PDF