Publications by authors named "Tracey L Campbell"

Four decades after early in vitro assembly studies demonstrated that ribosome assembly is a controlled process, our understanding of ribosome assembly is still incomplete. Just as structure determination has been so important to understanding ribosome function, so too will it be critical to sorting out the assembly process. Here, we used a viable deletion in the yjeQ gene, a recognized ribosome assembly factor, to isolate and structurally characterize immature 30S subunits assembled in vivo.

View Article and Find Full Text PDF

Malaria is caused by protozoan parasites of the genus Plasmodium and involves infection of multiple hosts and cell types during the course of an infection. To complete its complex life cycle the parasite requires strict control of gene regulation for survival and successful propagation. Thus far, the Apicomplexan AP2 (ApiAP2) family of DNA-binding proteins is the sole family of proteins to have surfaced as candidate transcription factors in all apicomplexan species.

View Article and Find Full Text PDF

The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins.

View Article and Find Full Text PDF

Characterization of 'unknown' proteins is one of the challenges of the post-genomic era. Here, we report a study of Bacillus subtilis YdiB, which belongs to an uncharted class of bacterial P-loop ATPases. Precise deletion of the ydiB gene yielded a mutant with much reduced growth rate compared to the wild-type strain.

View Article and Find Full Text PDF

The Escherichia coli protein YjeQ is a circularly permuted GTPase that is broadly conserved in bacteria. An emerging body of evidence, including cofractionation and in vitro binding to the ribosome, altered polysome profiles after YjeQ depletion, and stimulation of GTPase activity by ribosomes, suggests that YjeQ is involved in ribosome function. The growth of strains lacking YjeQ in culture is severely compromised.

View Article and Find Full Text PDF

YjeE is an essential ATPase in Escherichia coli whose cellular function remains uncharacterized. Using a genomic library, we have identified rstA as a multicopy suppressor of a conditional yjeE deletion strain. High-copy rstA is the first recorded suppressor for a lesion in yjeE, and this newly charted genetic interaction has the potential to be informative about the function, with further study of the interacting partners.

View Article and Find Full Text PDF

Gene products required for in vivo growth and survival of Staphylococcus aureus and other pathogens represent new targets for antimicrobial chemotherapy. In this study we created a Staphylococcus aureus yjeQ deletion strain and tested its virulence using a mouse kidney abscess infection model. The yjeQ deletion strain was compromised for growth in vitro and severely attenuated for virulence.

View Article and Find Full Text PDF

We present an analysis of the cellular phenotype and biochemical activity of a conserved bacterial GTPase of unknown function (YloQ and YjeQ in Bacillus subtilis and Escherichia coli respectively) using a collection of antibiotics of diverse mechanisms and chemical classes. We created a yloQ deletion strain, which exhibited a slow growth phenotype and formed chains of filamentous cells. Additionally, we constructed a conditional mutant in yloQ, where growth was dependent on inducible expression from a complementing copy of the gene.

View Article and Find Full Text PDF

In the study described here, we have taken steps to characterize the YjeE protein, an Escherichia coli protein of unknown function that is essential for bacterial viability. YjeE represents a protein family whose members are broadly conserved in bacteria, absent from eukaryotes and contain both Walker A and B motifs, characteristic of P-loop ATPases. We have revisited the dispensability of the yjeE gene in E.

View Article and Find Full Text PDF

The ispF gene product in Escherichia coli has been shown to catalyze the formation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MEC) in the deoxyxylulose (DOXP) pathway for isoprenoid biosynthesis. In this work, the E. coli gene ispF and its Bacillus subtilis orthologue, yacN, were deleted and conditionally complemented by expression of these genes from distant loci in the respective organisms.

View Article and Find Full Text PDF