Synapse loss is currently the best biological correlate of cognitive decline in Alzheimer's disease and other tauopathies. Synapses seem to be highly vulnerable to tau-mediated disruption in neurodegenerative tauopathies. However, it is unclear how and when this leads to alterations in function related to the progression of tauopathy and neurodegeneration.
View Article and Find Full Text PDFThe glymphatic system, that is aquaporin 4 (AQP4) facilitated exchange of CSF with interstitial fluid (ISF), may provide a clearance pathway for protein species such as amyloid-β and tau, which accumulate in the brain in Alzheimer's disease. Further, tau protein transference via the extracellular space, the compartment that is cleared by the glymphatic pathway, allows for its neuron-to-neuron propagation, and the regional progression of tauopathy in the disorder. The glymphatic system therefore represents an exciting new target for Alzheimer's disease.
View Article and Find Full Text PDFAlzheimer's disease (AD) is associated with the intracellular aggregation of hyperphosphorylated tau and the accumulation of β-amyloid in the neocortex. We use transgenic mice harboring human tau (rTg4510) and amyloid precursor protein (J20) mutations to investigate transcriptional changes associated with the progression of tau and amyloid pathology. rTg4510 mice are characterized by widespread transcriptional differences in the entorhinal cortex with changes paralleling neuropathological burden across multiple brain regions.
View Article and Find Full Text PDFAlzheimer's disease (AD)-associated synaptic dysfunction drives the progression of pathology from its earliest stages. Amyloid β (Aβ) species, both soluble and in plaque deposits, have been causally related to the progressive, structural and functional impairments observed in AD. It is, however, still unclear how Aβ plaques develop over time and how they progressively affect local synapse density and turnover.
View Article and Find Full Text PDFIn the original publication of this article [1], the funding acknowledgement for grant "Alzheimer Society Research Program (ASRP) from the Alzheimer Society of Canada" was missing.
View Article and Find Full Text PDFVisual impairments, such as difficulties in reading and finding objects, perceiving depth and structure from motion, and impaired stereopsis, have been reported in tauopathy disorders, such as frontotemporal dementia (FTD). These impairments however have been previously attributed to cortical pathologies rather than changes in the neurosensory retina or the optic nerve. Here, we examined tau pathology in the neurosensory retina of the rTg(tauP301L)4510 mouse model of FTD.
View Article and Find Full Text PDFBackground: Activation of microglia, the resident immune cells of the central nervous system, is a prominent pathological hallmark of Alzheimer's disease (AD). However, the gene expression changes underlying microglia activation in response to tau pathology remain elusive. Furthermore, it is not clear how murine gene expression changes relate to human gene expression networks.
View Article and Find Full Text PDFNon-invasive characterization of the pathological features of Alzheimer's disease (AD) could enhance patient management and the development of therapeutic strategies. Magnetic resonance imaging texture analysis (MRTA) has been used previously to extract texture descriptors from structural clinical scans in AD to determine cerebral tissue heterogeneity. In this study, we examined the potential of MRTA to specifically identify tau pathology in an AD mouse model and compared the MRTA metrics to histological measures of tau burden.
View Article and Find Full Text PDFDETQ, an allosteric potentiator of the dopamine D1 receptor, was tested in therapeutic models that were known to respond to D1 agonists. Because of a species difference in affinity for DETQ, all rodent experiments used transgenic mice expressing the human D1 receptor (hD1 mice). When given alone, DETQ reversed the locomotor depression caused by a low dose of reserpine.
View Article and Find Full Text PDFBackground: The choice and appropriate use of animal models in drug discovery for Alzheimer's disease (AD) is pivotal to successful clinical translation of novel therapeutics, yet true alignment of research is challenging. Current models do not fully recapitulate the human disease, and even exhibit various degrees of regional pathological burden and diverse functional alterations. Given this, relevant pathological and functional endpoints must be determined on a model-by-model basis.
View Article and Find Full Text PDFAbnormal alpha-synuclein (α-synuclein) expression and aggregation is a key characteristic of Parkinson's disease (PD). However, the exact mechanism(s) linking α-synuclein to the other central feature of PD, dopaminergic neuron loss, remains unclear. Therefore, improved cell and in vivo models are needed to investigate the role of α-synuclein in dopaminergic neuron loss.
View Article and Find Full Text PDFWith increasingly large numbers of mouse models of human disease dedicated to MRI studies, compromises between and MRI must be fully understood in order to inform the choice of imaging methodology. We investigate the application of high resolution and MRI, in combination with tensor-based morphometry (TBM), to uncover morphological differences in the rTg4510 mouse model of tauopathy. The rTg4510 mouse also offers a novel paradigm by which the overexpression of mutant tau can be regulated by the administration of doxycycline, providing us with a platform on which to investigate more subtle alterations in morphology with morphometry.
View Article and Find Full Text PDFOlfactory dysfunction is broadly associated with neurodevelopmental and neurodegenerative diseases and predicts increased mortality rates in healthy individuals. Conventional measurements of olfactory health assess odor processing pathways within the brain and provide a limited understanding of primary odor detection. Quantification of the olfactory sensory neurons (OSNs), which detect odors within the nasal cavity, would provide insight into the etiology of olfactory dysfunction associated with disease and mortality.
View Article and Find Full Text PDFMouse models of Alzheimer's disease have served as valuable tools for investigating pathogenic mechanisms relating to neurodegeneration, including tau-mediated and neurofibrillary tangle pathology-a major hallmark of the disease. In this work, we have used multiparametric magnetic resonance imaging (MRI) in a longitudinal study of neurodegeneration in the rTg4510 mouse model of tauopathy, a subset of which were treated with doxycycline at different time points to suppress the tau transgene. Using this paradigm, we investigated the sensitivity of multiparametric MRI to both the accumulation and suppression of pathologic tau.
View Article and Find Full Text PDFThe interneuronal propagation of aggregated tau is believed to play an important role in the pathogenesis of human tauopathies. It requires the uptake of seed-competent tau into cells, seeding of soluble tau in recipient neurons and release of seeded tau into the extracellular space to complete the cycle. At present, it is not known which tau species are seed-competent.
View Article and Find Full Text PDFUnlabelled: The entorhinal cortex (EC) is one of the first areas to be disrupted in neurodegenerative diseases such as Alzheimer's disease and frontotemporal dementia. The responsiveness of individual neurons to electrical and environmental stimuli varies along the dorsal-ventral axis of the medial EC (mEC) in a manner that suggests this topographical organization plays a key role in neural encoding of geometric space. We examined the cellular properties of layer II mEC stellate neurons (mEC-SCs) in rTg4510 mice, a rodent model of neurodegeneration.
View Article and Find Full Text PDFVascular abnormalities are a key feature of Alzheimer's disease (AD). Imaging of cerebral vascular reactivity (CVR) is a powerful tool to investigate vascular health in clinical populations although the cause of reduced CVR in AD patients is not fully understood. We investigated the specific role of tau pathology in CVR derangement in AD using the rTg4510 mouse model.
View Article and Find Full Text PDFIntracellular Tau inclusions are a pathological hallmark of several neurodegenerative diseases, collectively known as the tauopathies. They include Alzheimer disease, tangle-only dementia, Pick disease, argyrophilic grain disease, chronic traumatic encephalopathy, progressive supranuclear palsy, and corticobasal degeneration. Tau pathology appears to spread through intercellular propagation, requiring the formation of assembled "prion-like" species.
View Article and Find Full Text PDFIntracellular inclusions composed of hyperphosphorylated filamentous tau are a hallmark of Alzheimer's disease, progressive supranuclear palsy, Pick's disease and other sporadic neurodegenerative tauopathies. Recent in vitro and in vivo studies have shown that tau aggregates do not only seed further tau aggregation within neurons, but can also spread to neighbouring cells and functionally connected brain regions. This process is referred to as 'tau propagation' and may explain the stereotypic progression of tau pathology in the brains of Alzheimer's disease patients.
View Article and Find Full Text PDFProgressive mitochondrial dysfunction contributes to neuronal degeneration in age-mediated disease. An essential regulator of mitochondrial function is the deacetylase, sirtuin 3 (SIRT3). Here we investigate a role for CNS Sirt3 in mitochondrial responses to reactive oxygen species (ROS)- and Alzheimer's disease (AD)-mediated stress.
View Article and Find Full Text PDFThe microtubule-associated protein Tau plays a critical role in the pathogenesis of Alzheimer disease and several related disorders (tauopathies). In the disease Tau aggregates and becomes hyperphosphorylated forming paired helical and straight filaments, which can further condense into higher order neurofibrillary tangles in neurons. The development of this pathology is consistently associated with progressive neuronal loss and cognitive decline.
View Article and Find Full Text PDFParkinsonian neurodegeneration is associated with heightened levels of oxidative stress and the activation of apoptotic pathways. In an in vitro cellular model, we reported that 6-hydroxydopamine (6-OHDA) induces apoptotic cell death via the induction of mitochondrial dysfunction, the activation of caspase 3 and the consequent proteolytic activation of the redox-sensitive kinase, protein kinase C (PKC)delta, in PC12 cells. Here we have investigated the involvement of PKCdelta in 6-OHDA-induced cell death in vivo.
View Article and Find Full Text PDFIntroduction: In search for a suitable rat model to study potentially affected blood-brain barrier (BBB) transport mechanisms in the course of Parkinsons disease (PD) progression, experiments were performed to characterise Parkinsons disease markers following subcutaneous (SC) and intracerebral (IC) infusion of the toxin rotenone in the rat.
Methods: Studies were performed using Male Lewis rats. SC infusion of rotenone (3 mg/kg/day) was performed via an osmotic minipump.
Glutamate is the major excitatory transmitter in the brain. Recent developments in the molecular biology and pharmacology of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-subtype of glutamate receptors have led to the discovery of selective, potent and systemically active AMPA receptor potentiators. These molecules enhance synaptic transmission and play important roles in plasticity and cognitive processes.
View Article and Find Full Text PDF