Mar Environ Res
January 2025
We investigated the impact of sublethal thermal stress on physiological rates of the copepod Paracartia grani, and explored the influence of previous thermal history on this response. The copepods, originally reared at 19 °C, were raised for 23 generations at 22 °C and 25 °C, and posteriorly exposed for 7-d to stress temperature (28 °C). The copepod acclimation capacity was assessed by comparing metabolic balance at 28 °C against their respective rearing temperatures.
View Article and Find Full Text PDFMarine plankton capable of photosynthesis and predation ("mixoplankton") comprise up to 50% of protist plankton and include many harmful species. However, marine environmental management policies, including the European Union Marine Strategy Framework Directive (MSFD) and the USEPA, assume a strict dichotomy between autotrophic phytoplankton and heterotrophic zooplankton. Mixoplankton often differ significantly from these two categories in their response to environmental pressures and affect the marine environment in ways we are only beginning to understand.
View Article and Find Full Text PDFCopepod reproductive success largely depends on food quality, which also reflects the prey trophic mode. As such, modelling simulations postulate a trophic enhancement to higher trophic levels when mixotrophy is accounted in planktonic trophodynamics. Here, we tested whether photo-phagotrophic protists (mixoplankton) could enhance copepod gross-growth efficiency by nutrient upgrading mechanisms compared to obligate autotrophs and heterotrophs.
View Article and Find Full Text PDFPosidonia oceanica meadows are facing global threats mainly due to episodic heat waves. In a mesocosm experiment, we aimed at disentangling the molecular response of P. oceanica under increasing temperature (20 °C-32 °C).
View Article and Find Full Text PDFLong-acting injectable antiretroviral (LA-ARV) drugs with low toxicity profiles and propensity for drug-drug interactions are a goal for future ARV regimens. C34-PEG-Chol is a novel cholesterol tagged LA HIV-fusion-inhibitor (FI). We assessed pre-clinical toxicology and first-in-human administration of C34-PEG-Chol.
View Article and Find Full Text PDFAn effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV) infection, as an adjunct to newly developed directly-acting antivirals (DAA), or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3) vector and a modified vaccinia Ankara (MVA), encoding the non-structural proteins of HCV (NSmut), used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy), determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen.
View Article and Find Full Text PDFUnlabelled: Adenoviral vectors encoding hepatitis C virus (HCV) nonstructural (NS) proteins induce multispecific, high-magnitude, durable CD4(+) and CD8(+) T-cell responses in healthy volunteers. We assessed the capacity of these vaccines to induce functional HCV-specific immune responses and determine T-cell cross-reactivity to endogenous virus in patients with chronic HCV infection. HCV genotype 1-infected patients were vaccinated using heterologous adenoviral vectors (ChAd3-NSmut and Ad6-NSmut) encoding HCV NS proteins in a dose escalation, prime-boost regimen, with and without concomitant pegylated interferon-α/ribavirin therapy.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) causes respiratory infection in annual epidemics, with infants and the elderly at particular risk of developing severe disease and death. However, despite its importance, no vaccine exists. The chimpanzee adenovirus, PanAd3-RSV, and modified vaccinia virus Ankara, MVA-RSV, are replication-defective viral vectors encoding the RSV fusion (F), nucleocapsid (N), and matrix (M2-1) proteins for the induction of humoral and cellular responses.
View Article and Find Full Text PDFA protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies, and assessment of host immunity during acute infection highlight the critical role that effective T cell immunity plays in viral control.
View Article and Find Full Text PDFReplication-defective adenovirus vectors based on human serotype 5 (Ad5) induce protective immune responses against diverse pathogens and cancer in animal models, as well as elicit robust and sustained cellular immunity in humans. However, most humans have neutralizing antibodies to Ad5, which can impair the immunological potency of such vaccines. Here, we show that rare serotypes of human adenoviruses, which should not be neutralized in most humans, are far less potent as vaccine vectors than Ad5 in mice and nonhuman primates, casting doubt on their potential efficacy in humans.
View Article and Find Full Text PDFCurrently, no vaccine exists for hepatitis C virus (HCV), a major pathogen thought to infect 170 million people globally. Many studies suggest that host T cell responses are critical for spontaneous resolution of disease, and preclinical studies have indicated a requirement for T cells in protection against challenge. We aimed to elicit HCV-specific T cells with the potential for protection using a recombinant adenoviral vector strategy in a phase 1 study of healthy human volunteers.
View Article and Find Full Text PDFGB virus B (GBV-B) is closely related to hepatitis C virus (HCV), infects small non-human primates, and is thus a valuable surrogate for studying HCV. Despite significant differences, the 5' nontranslated RNAs (NTRs) of these viruses fold into four similar structured domains (I-IV), with domains II-III-IV comprising the viral internal ribosomal entry site (IRES). We previously reported the in vivo rescue of a chimeric GBV-B (vGB/III(HC)) containing HCV sequence in domain III, an essential segment of the IRES.
View Article and Find Full Text PDFGene therapy approaches based on liver-restricted and regulated alpha interferon (IFN-alpha) expression, recently shown to be effective in different murine hepatitis models, appear promising alternatives to inhibit hepatitis C virus (HCV) replication in patients and minimize side effects. Tamarins (Saguinus species) infected by GB virus B (GBV-B) are considered a valid surrogate model for hepatitis C to study the biology of HCV infection and the development of new antiviral drugs. To test the efficacy of local delivery and expression of IFN-alpha in this model, we have developed HD-TET-tIFN, a helper-dependent adenovirus vector expressing tamarin IFN-alpha (tIFN) under the control of the tetracycline-inducible transactivator rtTA2s-S2.
View Article and Find Full Text PDFHepatitis C virus (HCV) and GB virus B (GBV-B) replicons have been reported to replicate only in Huh7 cells. Here we demonstrate that subpopulations of another human hepatoma cell line, Hep3B, are permissive for the GBV-B replicon, showing different levels of enhancement of replication from those of the unselected parental cell population. Adaptive mutations are not required for replication of the GBV-B replicon in these cells, as already demonstrated for Huh7 cells.
View Article and Find Full Text PDFThe yield of G418-resistant Huh7 cell clones bearing subgenomic dicistronic GB virus B (GBV-B) is significantly affected by the insertion of a portion of the viral core gene between the GBV-B 5' untranslated region and the exogenous neomycin phosphotransferase selector gene (A. De Tomassi, M. Pizzuti, R.
View Article and Find Full Text PDFWe discovered that the hepatitis C virus (HCV) envelope glycoprotein E2 binds to human hepatoma cell lines independently of the previously proposed HCV receptor CD81. Comparative binding studies using recombinant E2 from the most prevalent 1a and 1b genotypes revealed that E2 recognition by hepatoma cells is independent from the viral isolate, while E2-CD81 interaction is isolate specific. Binding of soluble E2 to human hepatoma cells was impaired by deletion of the hypervariable region 1 (HVR1), but the wild-type phenotype was recovered by introducing a compensatory mutation reported previously to rescue infectivity of an HVR1-deleted HCV infectious clone.
View Article and Find Full Text PDFTamarins (Saguinus species) infected by GB virus B (GBV-B) have recently been proposed as an acceptable surrogate model for hepatitis C virus (HCV) infection. The availability of infectious genomic molecular clones of both viruses will permit chimeric constructs to be tested for viability in animals. Studies in cells with parental and chimeric constructs would also be very useful for both basic research and drug discovery.
View Article and Find Full Text PDFThe strong similarity between GB virus B (GBV-B) and hepatitis C virus (HCV) makes tamarins infected by GBV-B an acceptable surrogate animal model for HCV infection. Even more attractive, for drug discovery purposes, is the idea of constructing chimeric viruses by inserting HCV genes of interest into a GBV-B genome frame. To accomplish this, infectious cDNA clones of both viruses must be available.
View Article and Find Full Text PDFBackground: The hepatitis C virus (HCV) is responsible for a severe and widespread form of hepatitis for which a durable and effective therapy has not yet been established. The only approved therapy against hepatitis C, alpha-interferon protein intramuscular administration, presents numerous drawbacks that might be overcome by adopting a gene therapy approach. HCV exclusively infects humans and chimpanzees, hence an acceptable animal model for hepatitis C pharmacological studies is not available.
View Article and Find Full Text PDFThe identification of antivirals and vaccines against hepatitis C virus (HCV) infection is hampered by the lack of convenient animal models. The need to develop surrogate models has recently drawn attention to GB virus B (GBV-B), which produces hepatitis in small primates. In a previous study in vitro, it was shown that GBV-B NS3 protease shares substrate specificity with the HCV enzyme, known to be crucial for virus replication.
View Article and Find Full Text PDFHepatitis C virus (HCV) glycoprotein E2 binds to human cells by interacting with the CD81 molecule, which has been proposed to be the viral receptor. A correlation between binding to CD81 and species permissiveness to HCV infection has also been reported. We have determined the sequence of CD81 from the tamarin, a primate species known to be refractory to HCV infection.
View Article and Find Full Text PDFGB virus B (GBV-B) is a virus of the family Flaviviridae that infects small primates (Saguinus sp. [tamarins]) and shows similarities to hepatitis C virus (HCV) in genome organization, protein function, tissue tropism, and pathogenicity. This suggests the possibility of using tamarins infected by GBV-B or GBV-B/HCV chimeric viruses as a surrogate animal model of HCV infection.
View Article and Find Full Text PDFGB virus B (GBV-B) is a recently discovered virus responsible for hepatitis in tamarins (Saguinus species). GBV-B belongs to the Flaviviridae family and is closely related to the human pathogen hepatitis C virus (HCV). Nonstructural protein 3 (NS3) of HCV has been shown to encompass a serine protease domain required for viral maturation.
View Article and Find Full Text PDFHuman antibodies to hepatitis C virus core, NS4A and NS3 were cloned in a prokaryotic vector and expressed as soluble Fab fragments and as phage-displayed Fabs. The recombinant Fabs were shown to be a suitable tool for immunohistochemistry, since they recognize the cognate antigen expressed in mammalian cells. The nucleotide sequence of the cDNA for the variable domains of these antibodies was determined and the V-gene usage was derived.
View Article and Find Full Text PDF