Publications by authors named "Tra-My Vu"

Propagation of tau fibrils correlate closely with neurodegeneration and memory deficits seen during the progression of Alzheimer's disease (AD). Although it is not well-established what drives or attenuates tau spreading, new studies on human brain using positron emission tomography (PET) have shed light on how tau phosphorylation, genetic factors, and the initial epicenter of tau accumulation influence tau accumulation and propagation throughout the brain. Here, we review the latest PET studies performed across the entire AD continuum looking at the impact of amyloid load on tau pathology.

View Article and Find Full Text PDF

The role of non-neuronal cells has been relatively overlooked in Alzheimer's disease (AD) neuropathogenesis compared to neuronal cells since the first characterization of the disease. Genome wide-association studies (GWAS) performed in the last few decades have greatly contributed to highlighting the critical impact of non-neuronal cells in AD by uncovering major genetic risk factors that are found largely in these cell types. The recent development of single cell or single nucleus technologies has revolutionized the way we interrogate the transcriptomic and epigenetic profiles of neurons, microglia, astrocytes, oligodendrocytes, pericytes, and endothelial cells simultaneously in the same sample and in an individual manner.

View Article and Find Full Text PDF

Background: Old age, the most important risk factor for Alzheimer's disease (AD), is associated with thermoregulatory deficits. Brown adipose tissue (BAT) is the main thermogenic driver in mammals and its stimulation, through β3 adrenergic receptor (β3AR) agonists or cold acclimation, counteracts metabolic deficits in rodents and humans. Studies in animal models show that AD neuropathology leads to thermoregulatory deficits, and cold-induced tau hyperphosphorylation is prevented by BAT stimulation through cold acclimation.

View Article and Find Full Text PDF

Objective: Old age is associated with a rise in the incidence of Alzheimer's disease (AD) but also with thermoregulatory deficits. Indicative of a link between the two, hypothermia induces tau hyperphosphorylation. The 3xTg-AD mouse model not only develops tau and amyloid pathologies in the brain but also metabolic and thermoregulatory deficits.

View Article and Find Full Text PDF