Publications by authors named "Tozzini F"

Sixty-six 20- to 23-amino-acid synthetic peptides, partially overlapping by 10-12 amino acids, spanning the entire sequence of the envelope SU and TM glycoproteins of the Petaluma isolate of FIV, have been used to investigate the Env domains involved in viral infection. Peptides 5 to 7, spanning amino acids 225E-P264 located in a conserved region of the SU protein, and peptides 58 to 61, spanning amino acids 767N-P806 and encompassing hypervariable region 8 of TM protein, exhibited a remarkable and specific antiviral effect against the homologous and one heterologous isolate, as judged by inhibition of FIV-induced syncytium formation and p25 production in CrFK cells. Peptides 5 and 7, but not peptides 58 and 59, also inhibited viral replication of a fresh FIV isolate on nontransformed lymphoid cells.

View Article and Find Full Text PDF

So far, vaccination experiments against feline immunodeficiency virus have used in vitro-grown virus to challenge the vaccinated hosts. In this study, cats were vaccinated with fixed feline immunodeficiency virus-infected cells and challenged with plasma obtained from cats infected with the homologous virus diluted to contain 10 cat 50% infectious doses. As judged by virus culture, PCRs, and serological analyses performed over an 18-month period after the challenge, all of the vaccinated cats were clearly protected.

View Article and Find Full Text PDF

A panel of six IgG monoclonal antibodies (MAbs) was produced by immunizing mice with a 22 amino acid synthetic peptide, designated V3.3, of the third variable region of feline immunodeficiency virus (FIV) envelope glycoprotein. This peptide is known to induce neutralizing antibodies in cats.

View Article and Find Full Text PDF

The feline immunodeficiency virus (FIV) induces syncytia in Crandell feline kidney (CrFK) cells grown in low fetal bovine serum-containing medium. This finding has allowed the development of sensitive FIV titration and neutralization assays using syncytium formation as an indicator of infection. In this report we examine several variables that can influence number and size of syncytia.

View Article and Find Full Text PDF

We have vaccinated five groups of cats (n = 25) four times with five preparations of recombinant feline immunodeficiency virus (FIV) env gene products; one group (n = 7) served as control. The vaccine formulations were as follows: (1) envelope glycoprotein of FIV Zurich 2 (FIV Z2) expressed in a Baculovirus system and isolated by gel electroelution (denatured form); (2) insect cells expressing FIV Z2 glycoprotein; (3) envelope glycoprotein of a Boston strain (FIV Bangston) expressed in insect cells and isolated by gel electroelution (denatured form); (4) glycosylated Bangston envelope protein made in insect cells and isolated in a native form; (5) non-glycosylated Bangston envelope protein made in Escherichia coli. All cats were challenged with 20 50% cat infective doses (CID50) of FIV Z2 previously titrated in cats.

View Article and Find Full Text PDF

The lentivirus feline immunodeficiency virus (FIV) is a widespread pathogen of the domestic cat that is mainly transmitted through bites, although other means of transmission are also possible. Its prevalence ranges from 1 to 10% in different cat populations throughout the world, thus representing a large reservoir of naturally infected animals. FIV resembles the human immunodeficiency virus (HIV) in many respects.

View Article and Find Full Text PDF

Specific-pathogen-free cats, immunized with a 22-amino-acid synthetic peptide designated V3.3 and derived from the third variable region of the envelope glycoprotein of the Petaluma isolate of feline immunodeficiency virus (FIV), developed high antibody titers to the V3.3 peptide and to purified virus, as assayed by enzyme-linked immunoassays, as well as neutralizing antibodies, as assayed by the inhibition of syncytium formation in Crandell feline kidney cells.

View Article and Find Full Text PDF

Sera from feline immunodeficiency virus (FIV)-infected cats exhibited extremely low levels of neutralizing antibodies against virus passaged a few times in vitro (low passage), when residual infectivity was assayed in the CD3+ CD4- CD8- MBM lymphoid cell line or mitogen-activated peripheral blood mononuclear cells. By sharp contrast, elevated titers of highly efficient neutralizing activity against FIV were measured, by use of high-passage virus, in assays on either the fibroblastoid CrFK or MBM cell line. However, high-passage virus behaved the same as low-passage virus after one in vivo passage in a specific-pathogen-free cat and reisolation.

View Article and Find Full Text PDF

Synthetic peptides have been used to map linear B-cell epitopes of the third variable (V3) region of the feline immunodeficiency virus (FIV) external membrane glycoprotein gp120. The analysis of sera from naturally and experimentally FIV-infected cats by Pepscan and enzyme immunoassay with four partially overlapping peptides evidenced three antibody-binding domains, two of which mapped in the carboxyl-terminal half of V3. In particular, the V3.

View Article and Find Full Text PDF

Sera from cats experimentally infected with five isolates of feline immunodeficiency virus (FIV) from various geographical regions and from FIV enzyme-linked immunosorbent assay-seropositive field cats from four European countries neutralized the Petaluma strain of FIV (FIV-P), originally isolated in California, at high titers. In addition, FIV-P and a European isolate proved equally susceptible to neutralization by all sera tested. Coupled with observations by Fevereiro et al.

View Article and Find Full Text PDF

The rates of feline immunodeficiency virus (FIV) isolation from saliva, plasma, and peripheral blood mononuclear cells (PBMC) of infected cats were compared; isolation rates were 18, 14, and 81%, respectively, in naturally infected cats and 25, 57, and 100%, respectively, in experimentally infected animals. There was no obvious relationship between isolation rate and clinical stage or between isolation rate and the titer of neutralizing antibody in serum. Virus could be isolated from one salivary gland as early as 1 week postinfection and, on a more regular basis, starting at 3 weeks postinfection, when, however, most other tissues were also positive.

View Article and Find Full Text PDF

The feline immunodeficiency virus (FIV) readily produced syncytia in Crandell feline kidney (CrFK) cells adapted to a medium containing 0.5% fetal calf serum, a variety of growth factors and other supplements. This finding has been exploited to develop simple and sensitive virus titration and neutralization assays.

View Article and Find Full Text PDF

Two hundred and seventy-seven sick pet cats living in Italy were tested for antibodies to feline immunodeficiency virus (FIV) and for feline leukemia virus (FeLV) antigen. Overall, 24% of the cats resulted positive for anti-FIV antibody and 18% for FeLV antigen. FIV was isolated from the peripheral mononuclear blood cells of ten out of 15 seropositive cats examined and from one out of eight saliva samples.

View Article and Find Full Text PDF

Experimental infection with pseudorabies virus was carried out by oral exposure of four young wild swine held in contact with two unexposed controls. No disease was observed but virological procedures indicated that the virus was shed in saliva and, in one case, in the nasal discharge, with subsequent infection of the control animals. After slaughter the virus was reisolated from the tonsils but not from lungs and brain.

View Article and Find Full Text PDF

In these experiments a technique for enhancing the virus replication in tissue culture (RK13 cells) has been used. The method consisted in growing the cells in presence of mug 0.4-0.

View Article and Find Full Text PDF

Methods are described for rapid and economical production of large quantities of foot-and-mouth disease virus in stationary cultures of trypsin-dispersed bovine kidney cells in a simple medium. Yields of between 10(7) and 10(8) plaque-forming units per milliliter were obtained from serum-free cultures containing approximately a million and a half viable trypsin-dispersed cells per milliliter. Some of the advantages and disadvantages of these methods of virus production are discussed.

View Article and Find Full Text PDF