Artificial molecular machines, especially when based on wheel-and-axle complexes, can generate mechanical motions in response to external stimuli. Ferrocene (Fc) is a key component, but it decomposes at 300 K on metal surfaces. Here, a novel method is presented to construct and control the molecular complex composed of ammonium-linked ferrocene (Fc-amm) and tetrabrominated crown ether (BrCR) on a Cu(111) surface.
View Article and Find Full Text PDFChemical synthesis typically yields the most thermodynamically stable ordered arrangement, a principle also governing surface synthesis on an atomically level two-dimensional (2D) surface, fostering the creation of structured 2D formations. The linear connection arising from energetically stable chemical bonding precludes the generation of a 2D random network comprised of one-dimensional (1D) convoluted stripes through on-surface synthesis. Nonetheless, we underscored that on-surface synthesis possesses the capability not solely to fashion a 2D ordered linear network but also to fabricate a winding 2D network employing a precursor with a soft ring and intermediate state bonding within the Ullmann reaction.
View Article and Find Full Text PDFSuperconductors are of type I or II depending on whether they form an Abrikosov vortex lattice. Although bulk lead (Pb) is classified as a prototypical type-I superconductor, we show that its two-band superconductivity allows for single-flux-quantum and multiple-flux-quanta vortices in the intermediate state at millikelvin temperature. Using scanning tunneling microscopy, the winding number of individual vortices is determined from the real space wave function of its Caroli-de Gennes-Matricon bound states.
View Article and Find Full Text PDFWe report an ultra-high-vacuum low-temperature (4.6 K) scanning tunneling microscopy study of the molecular structure and dynamics of a carbon monoxide (CO) monolayer adsorbed at 20 K on Cu(111). We observe the well-known 1.
View Article and Find Full Text PDFA tungsten (W) tip has been used as a standard tip probe because of its robustness at the highest boiling temperature; the use cases include a field emission (FE) electron source for scanning electron microscopy (SEM) and a scanning probe microscopy tip. The W tip probe has generally been fabricated through a chemical etching process with aqueous solutions. In this study, we propose a new method-flame etching.
View Article and Find Full Text PDFPrecise control of organic molecule deposition on a substrate is quite important for fabricating single-molecule-based devices. In this study, we demonstrate whether a quartz-crystal microbalance (QCM) widely used for a film growth calibration has the ability to precisely measure the number of organic molecules adsorbed on a substrate. The well-known Sauerbrey's equation is extended to formulate the relation between QCM resonant frequency shift and the number of adsorbed molecules onto the QCM surface.
View Article and Find Full Text PDFBand gap opening of a single-layer graphene nanoribbon (sGNR) sitting on another sGNR, fabricated by drop casting GNR solution on Au(111) substrate in air, was studied by means of scanning tunneling microscopy and spectroscopy in an ultra-high vacuum at 78 K and 300 K. GNRs with a width of ∼45 nm were prepared by unzipping double-walled carbon nanotubes (diameter ∼15 nm) using the ultrasonic method. In contrast to atomically-flat GNRs fabricated via the bottom-up process, the drop cast sGNRs were buckled on Au(111), i.
View Article and Find Full Text PDFAn important step toward molecule-based electronics is to realize a robust and well-ordered molecular network at room temperature. To this end, one key challenge is tuning the molecule-substrate electronic interactions that influence not only the molecular selfassembly but also the stability of the resulting structures. In this study, we investigate the film formation of π-conjugated metal-free phthalocyanine molecules on a 3d-bcc-Fe(001) whisker substrate at 300 K by using ultra-high-vacuum scanning tunneling microscopy.
View Article and Find Full Text PDFA simple method for fabricating single-layer graphene nanoribbons (sGNRs) from double-walled carbon nanotubes (DWNTs) was developed. A sonication treatment was employed to unzip the DWNTs by inducing defects in them through annealing at 500 °C. The unzipped DWNTs yielded double-layered GNRs (dGNRs).
View Article and Find Full Text PDFThe magnetoresistance of a hydrogen-phthalocyanine molecule placed on an antiferromagnetic Mn(001) surface and contacted by a ferromagnetic Fe electrode is investigated using density functional theory based transport calculations and low-temperature scanning tunneling microscopy. A large and negative magnetoresistance ratio of ~50% is observed in combination with a high conductance. The effect originates from a lowest unoccupied molecular orbital (LUMO) doublet placed almost in resonance with the Fermi energy.
View Article and Find Full Text PDFA nanoscale molecular switch can be used to store information in a single molecule. Although the switching process can be detected electrically in the form of a change in the molecule's conductance, adding spin functionality to molecular switches is a key concept for realizing molecular spintronic devices. Here we show that iron-based spin-crossover molecules can be individually and reproducibly switched between a combined high-spin, high-conduction state and a low-spin, low-conduction state, provided the individual molecule is decoupled from a metallic substrate by a thin insulating layer.
View Article and Find Full Text PDF