Uniform size of Si nanowires (NWs) is highly desirable to enhance the performance of Si NW-based lithium-ion batteries. To achieve a narrow size distribution of Si NWs, the formation of bulk-like Si structures such as islands and chunks needs to be inhibited during nucleation and growth of Si NWs. We developed a simple approach to control the nucleation of Si NWs interfacial energy tuning between metal catalysts and substrates by introducing a conductive diffusion barrier.
View Article and Find Full Text PDFAdvances in epitaxy have enabled the preparation of high-quality material architectures consisting of incommensurate components. Remote epitaxy based on lattice transparency of atomically thin graphene has been intensively studied for cost-effective advanced device manufacturing and heterostructure formation. However, remote epitaxy on nongraphene two-dimensional (2D) materials has rarely been studied even though it has a broad and immediate impact on various disciplines, such as many-body physics and the design of advanced devices.
View Article and Find Full Text PDFThe preparation of crystalline materials on incommensurate substrates has been a key topic of epitaxy. van der Waals (vdW) epitaxy on two-dimensional (2D) materials opened novel opportunities of epitaxial growth overcoming the materials compatibility issue. Therefore, vdW epitaxy has been considered as a promising approach for the preparation of building blocks of flexible devices and thin film-based devices at the nano/microscale.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2018
n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ∼0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time.
View Article and Find Full Text PDFMolecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water.
View Article and Find Full Text PDFZnO radial p-n junction architecture has the potential for forward-leap of light-emitting diode (LED) technology in terms of higher efficacy and economical production. We report on ZnO radial p-n junction-based light emitting diodes prepared by full metalorganic chemical vapour deposition (MOCVD) with hydrogen-assisted p-type doping approach. The p-type ZnO(P) thin films were prepared by MOCVD with the precursors of dimethylzinc, tert-butanol, and tertiarybutylphosphine.
View Article and Find Full Text PDFHeterostructuring provides novel opportunities for exploring emergent phenomena and applications by developing designed properties beyond those of homogeneous materials. Advances in nanoscience enable the preparation of heterostructures formed incommensurate materials. Two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, are of particular interest due to their distinct physical characteristics.
View Article and Find Full Text PDFStrain is a novel approach to manipulating functionalities in correlated complex oxides. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness.
View Article and Find Full Text PDFWe study the temperature-dependent phonon modes of the organometallic lead iodide perovskite CH3NH3PbI3 thin film across the terahertz (0.5-3 THz) and temperature (20-300 K) ranges. These modes are related to the vibration of the Pb-I bonds.
View Article and Find Full Text PDFDNA methylation plays a pivotal role in the genetic evolution of both embryonic and adult cells. For adult somatic cells, the location and dynamics of methylation have been very precisely pinned down with the 5-cytosine markers on cytosine-phosphate-guanine (CpG) units. Unusual methylation on CpG islands is identified as one of the prime causes for silencing the tumor suppressant genes.
View Article and Find Full Text PDFIn this study, we examine the mechanism of nanopore-based DNA sequencing using a voltage bias across a graphene nanoribbon. Using density function theory and a nonequilibrium Green's function approach, we determine the transmission spectra and current profile for adenine, guanine, cytosine, thymine, and uracil as a function of bias voltage in an energy minimized configuration. Utilizing the transmission current, we provide a general methodology for the development of a three nanopore graphene-based device that can be used to distinguish between the various nucleobases for DNA/RNA sequencing.
View Article and Find Full Text PDFWe investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium.
View Article and Find Full Text PDFParticle sizes of manganese oxide (β-MnO2) powders were modified by using a mortar and pestle ground method for period of times that varied between 15-60 min. Particle size versus ground time clearly shows the existence of a size-induced regime transition (i.e.
View Article and Find Full Text PDFCalculations are presented of the electronic structure and X-ray spectra of materials with correlated d- and f-electron states based on the Hubbard model, a real-space multiple-scattering formalism and a rotationally invariant local density approximation. Values of the Hubbard parameter are calculated ab initio using the constrained random-phase approximation. The combination of the real-space Green's function with Hubbard model corrections provides an efficient approach to describe localized correlated electron states in these systems, and their effect on core-level X-ray spectra.
View Article and Find Full Text PDFBackground: Excitotoxicity (the toxic overstimulation of neurons by the excitatory transmitter Glutamate) is a central process in widespread neurodegenerative conditions such as brain ischemia and chronic neurological diseases. Many mechanisms have been suggested to mediate excitotoxicity, but their significance across diverse excitotoxic scenarios remains unclear. Death Associated Protein Kinase (DAPK), a critical molecular switch that controls a range of key signaling and cell death pathways, has been suggested to have an important role in excitotoxicity.
View Article and Find Full Text PDFNanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore.
View Article and Find Full Text PDFWe calculate the electronic local density of states (LDOS) of DNA nucleotide bases (A,C,G,T), deposited on graphene. We observe significant base-dependent features in the LDOS in an energy range within a few electronvolts of the Fermi level. These features can serve as electronic fingerprints for the identification of individual bases in scanning tunneling spectroscopy (STS) experiments that perform image and site dependent spectroscopy on biomolecules.
View Article and Find Full Text PDF