Degradation of stromal collagens in the extracellular matrix is mediated largely by matrix metalloproteinase-1 (MMP-1; collagenase-1), and high constitutive levels of MMP-1 in breast cancer correlate with a poor prognosis and invasive disease. MMP-1 expression is, in part, controlled by the mitogen-activated protein kinase (MAPK) pathway(s), which may target several activator protein-1 (AP-1) and polyoma enhancing activity-3/E26 virus (PEA3/ETS) sites within the promoter. An additional ETS site in the MMP-1 promoter is conferred by a single nucleotide polymorphism (SNP) at -1607 bp, when two guanines (5'-GGAT-3'; '2G allele/SNP') are present instead of one guanine (5'-GAT-3'; '1G allele/SNP').
View Article and Find Full Text PDFThe matrix metalloproteinase (MMP) family degrades the extracellular matrix. One member of this family, MMP-1, initiates the breakdown of interstitial collagens. The expression of MMP-1 is controlled by the mitogen activated protein kinase (MAPK) pathway(s) via the activity of activator protein-1 (AP-1) and polyoma enhancing activity-3/E26 virus (PEA3/ETS) transcription factors through consensus binding sites present in the promoter.
View Article and Find Full Text PDFMatrix metalloproteinase-1 (MMP-1) is one of only a few enzymes with the ability to degrade the stromal collagens (types I and III) at neutral pH, and high expression of MMP-1 has been associated with aggressive and invasive cancers. We recently reported a single nucleotide insertion/deletion polymorphism (SNP) in the collagenase-1 (MMP-1) promoter (Rutter et al. [1998] Can.
View Article and Find Full Text PDFMatrix metalloproteinase-1 (MMP-1) breaks down interstitial collagens, a major component of stromal tissue and a barrier for invading tumor cells. The degradation of collagen by MMP-1 may, therefore, provide one mechanism for facilitating tumor invasion and metastasis. Because of the potential for excessive matrix degradation, the expression of MMP-1 is tightly regulated, often by the mitogen-activated protein kinase (MAPK) pathway.
View Article and Find Full Text PDFManganese-superoxide dismutase (Sod2) removes mitochondrially derived superoxide (O(2)) at near-diffusion limiting rates and is the only antioxidant enzyme whose expression is regulated by numerous stimuli. Here it is shown that Sod2 also serves as a source of the intracellular signaling molecule H(2)O(2). Sod2-dependent increases in the steady-state levels of H(2)O(2) led to ERK1/2 activation and subsequent downstream transcriptional increases in matrix metalloproteinase-1 (MMP-1) expression, which were reversed by expression of the H(2)O(2)-detoxifying enzyme, catalase.
View Article and Find Full Text PDFMethanol extracts were prepared from 19 medicinal plants of Togo and, by means of standard laboratory tests, were analysed for antiviral and antibiotic activities. Ten of the 19 showed significant antiviral activity and all but two displayed antibiotic activity. Extracts of three species, Adansonia digitata (the most potent), Conyza aegyptiaca and Palisota hirsuta , were active against all three test viruses (herpes simplex, Sindbis and poliovirus).
View Article and Find Full Text PDF