Discerning functional brain network variations related to neuropathological aggregates in Alzheimer's disease (AD), including amyloid-beta (Abeta) and phosphorylated tau (p-tau), is crucial for understanding their link to cognitive decline and underlying molecular mechanisms. However, these variations are often confounded by normal aging-related changes, complicating interpretation. To address this challenge, we first defined Alzheimer's continuum cases (Abeta positive (A+), n = 129) and normal elderly (Abeta negative (A-), n = 160) using cerebral spinal fluid amyloid levels, and then applied a novel deep learning approach to resting-state connectivity using functional magnetic resonance imaging (fMRI) of the 289 subjects to disentangle A+-specific dimensions in brain network alterations from those shared with A- individuals.
View Article and Find Full Text PDFBackground: An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects.
View Article and Find Full Text PDFBackground: An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects.
View Article and Find Full Text PDF