We use the spectral kinetic theory of soliton gas to investigate the likelihood of extreme events in integrable turbulence described by the one-dimensional focusing nonlinear Schrödinger equation (fNLSE). This is done by invoking a stochastic interpretation of the inverse scattering transform for fNLSE and analytically evaluating the kurtosis of the emerging random nonlinear wave field in terms of the spectral density of states of the corresponding soliton gas. We then apply the general result to two fundamental scenarios of the generation of integrable turbulence: (i) the asymptotic development of the spontaneous modulational instability of a plane wave, and (ii) the long-time evolution of strongly nonlinear, partially coherent waves.
View Article and Find Full Text PDFJ Nonlinear Sci
September 2023
We consider large-scale dynamics of non-equilibrium dense soliton gas for the Korteweg-de Vries (KdV) equation in the special "condensate" limit. We prove that in this limit the integro-differential kinetic equation for the spectral density of states reduces to the -phase KdV-Whitham modulation equations derived by Flaschka et al. (Commun Pure Appl Math 33(6):739-784, 1980) and Lax and Levermore (Commun Pure Appl Math 36(5):571-593, 1983).
View Article and Find Full Text PDFWe numerically realize a breather gas for the focusing nonlinear Schrödinger equation. This is done by building a random ensemble of N∼50 breathers via the Darboux transform recursive scheme in high-precision arithmetics. Three types of breather gases are synthesized according to the three prototypical spectral configurations corresponding the Akhmediev, Kuznetsov-Ma, and Peregrine breathers as elementary quasiparticles of the respective gases.
View Article and Find Full Text PDFIn this paper we study the spectra of bounded self-adjoint linear operators that are related to finite Hilbert transforms and . These operators arise when one studies the interior problem of tomography. The diagonalization of has been previously obtained, but only asymptotically when .
View Article and Find Full Text PDFSolitons and breathers are localized solutions of integrable systems that can be viewed as "particles" of complex statistical objects called soliton and breather gases. In view of the growing evidence of their ubiquity in fluids and nonlinear optical media, these "integrable" gases present a fundamental interest for nonlinear physics. We develop an analytical theory of breather and soliton gases by considering a special, thermodynamic-type limit of the wave-number-frequency relations for multiphase (finite-gap) solutions of the focusing nonlinear Schrödinger equation.
View Article and Find Full Text PDFWe report experimental confirmation of the universal emergence of the Peregrine soliton predicted to occur during pulse propagation in the semiclassical limit of the focusing nonlinear Schrödinger equation. Using an optical fiber based system, measurements of temporal focusing of high power pulses reveal both intensity and phase signatures of the Peregrine soliton during the initial nonlinear evolution stage. Experimental and numerical results are in very good agreement, and show that the universal mechanism that yields the Peregrine soliton structure is highly robust and can be observed over a broad range of parameters.
View Article and Find Full Text PDFThe subject of this paper is the construction of the exponential asymptotic expansions of the unstable and stable manifolds of the area-preserving Henon map. The approach that is taken enables one to capture the exponentially small effects that result from what is known as the Stokes phenomenon in the analytic theory of equations with irregular singular points. The exponential asymptotic expansions were then used to obtain explicit functional approximations for the stable and unstable manifolds.
View Article and Find Full Text PDF