Publications by authors named "Tova Ceccato"

Background Biological sex is an important modifier of cardiovascular disease and women generally have better outcomes compared with men. However, the contribution of cardiac fibroblasts (CFs) to this sexual dimorphism is relatively unexplored. Methods and Results Isoproterenol (ISO) was administered to rats as a model for chronic β-adrenergic receptor (β-AR)-mediated cardiovascular disease.

View Article and Find Full Text PDF

Background Cardiac fibroblasts (CFs) have the ability to sense stiffness changes and respond to biochemical cues to modulate their states as either quiescent or activated myofibroblasts. Given the potential for secretion of bioactive molecules to modulate the cardiac microenvironment, we sought to determine how the CF secretome changes with matrix stiffness and biochemical cues and how this affects cardiac myocytes via paracrine signaling. Methods and Results Myofibroblast activation was modulated in vitro by combining stiffness cues with TGFβ1 (transforming growth factor β 1) treatment using engineered poly (ethylene glycol) hydrogels, and in vivo with isoproterenol treatment.

View Article and Find Full Text PDF

The transcatheter aortic valve replacement (TAVR) procedure has emerged as a minimally invasive treatment for patients with aortic valve stenosis (AVS). However, alterations in serum factor composition and biological activity after TAVR remain unknown. Here, we quantified the systemic inflammatory effects of the TAVR procedure and hypothesized that alterations in serum factor composition would modulate valve and cardiac fibrosis.

View Article and Find Full Text PDF

There is a growing interest in materials that can dynamically change their properties in the presence of cells to study mechanobiology. Herein, we exploit the 365 nm light mediated [4+4] photodimerization of anthracene groups to develop cytocompatible PEG-based hydrogels with tailorable initial moduli that can be further stiffened. A hydrogel formulation that can stiffen from 10 to 50 kPa, corresponding to the stiffness of a healthy and fibrotic heart, respectively, was prepared.

View Article and Find Full Text PDF