A principal concept in developing antibacterial agents with selective toxicity is blocking metabolic pathways that are critical for bacterial growth but that mammalian cells lack. Serine -acetyltransferase (CysE) is an enzyme in many bacteria that catalyzes the first step in l-cysteine biosynthesis by transferring an acetyl group from acetyl coenzyme A (acetyl-CoA) to l-serine to form -acetylserine. Because mammalian cells lack this l-cysteine biosynthesis pathway, developing an inhibitor of CysE has been thought to be a way to establish a new class of antibacterial agents.
View Article and Find Full Text PDFInfection of mice with Citrobacter rodentium is a useful model for studying the pathogenicity of enteropathogenic and enterohemorrhagic Escherichia coli, pathogens that have a close association with humans. Here, we provide a protocol detailing the approaches for non-canonical inflammasome analysis in a mouse model of C. rodentium infection, including preparation of bacteria, oral administration of bacteria to mice, counting colony-forming units to quantify bacterial colonization, and analysis of expression and activation of inflammasome-related factors.
View Article and Find Full Text PDFPseudomonas aeruginosa is a Gram-negative opportunistic pathogen that presents a serious risk to immunosuppressed individuals and other extremely vulnerable patients such as those in intensive care units. The emergence of multidrug-resistant Pseudomonas strains has increased the need for new antipseudomonal agents. In this study, a series of amino group-modified aminopenicillin derivatives was synthesized that have different numbers of carboxyl groups and structurally resemble carboxypenicillin-ureidopenicillin hybrids, and their antipseudomonal activities were evaluated.
View Article and Find Full Text PDF