Inactivation of voltage-gated Na channels (VGSC) is essential for the regulation of cellular excitability. The molecular rearrangement underlying inactivation is thought to involve the intracellular linker between domains III and IV serving as inactivation lid, the receptor for the lid (domain III S4-S5 linker) and the pore-lining S6 segements. To better understand the role of the domain IV S6 segment in inactivation we performed a cysteine scanning mutagenesis of this region in rNav 1.
View Article and Find Full Text PDFDespite the availability of several crystal structures of bacterial voltage-gated Na(+) channels, the structure of eukaryotic Na(+) channels is still undefined. We used predictions from available homology models and crystal structures to modulate an external access pathway for the membrane-impermeant local anesthetic derivative QX-222 into the internal vestibule of the mammalian rNaV1.4 channel.
View Article and Find Full Text PDFVoltage-gated ion channels are transmembrane proteins that undergo complex conformational changes during their gating transitions. Both functional and structural data from K(+) channels suggest that extracellular and intracellular parts of the pore communicate with each other via a trajectory of interacting amino acids. No crystal structures are available for voltage-gated Na(+) channels, but functional data suggest a similar intramolecular communication involving the inner and outer vestibules.
View Article and Find Full Text PDFThe outer vestibule of voltage-gated Na(+) channels is formed by extracellular loops connecting the S5 and S6 segments of all four domains ("P-loops"), which fold back into the membrane. Classically, this structure has been implicated in the control of ion permeation and in toxin blockage. However, conformational changes of the outer vestibule may also result in alterations in gating, as suggested by several P-loop mutations that gave rise to gating changes.
View Article and Find Full Text PDFSlow inactivated states in voltage-gated ion channels can be modulated by binding molecules both to the outside and to the inside of the pore. Thus, external K(+) inhibits C-type inactivation in Shaker K(+) channels by a "foot-in-the-door" mechanism. Here, we explore the modulation of a very long-lived inactivated state, ultraslow inactivation (I(US)), by ligand binding to the outer vestibule in voltage-gated Na(+) channels.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2007
Intracardiac transplantation of undifferentiated skeletal muscle cells (myoblasts) has emerged as a promising therapy for myocardial infarct repair and is already undergoing clinical trials. The fact that cells originating from skeletal muscle have different electrophysiological properties than cardiomyocytes, however, may considerably limit the success of this therapy and, in addition, cause side effects. Indeed, a major problem observed after myoblast transplantation is the occurrence of ventricular arrhythmias.
View Article and Find Full Text PDFMutations in the putative selectivity filter region of the voltage-gated Na+ channel, the so-called DEKA-motif, not only affect selectivity but also alter the channel's gating properties, suggesting functional coupling between permeation and gating. We have previously reported that charge-altering mutations at position 1237 in the P-loop of domain III (position K of the DEKA-motif in the adult rat skeletal muscle Na+ channel, rNa(v)1.4) dramatically enhanced entry to an inactivated state from which the channels recovered with a very slow time constant on the order of approximately 100 s (Todt, H.
View Article and Find Full Text PDFAfter opening, Na(+) channels may enter several kinetically distinct inactivated states. Whereas fast inactivation occurs by occlusion of the inner channel pore by the fast inactivation gate, the mechanistic basis of slower inactivated states is much less clear. We have recently suggested that the inner pore of the voltage-gated Na(+) channel may be involved in the process of ultra-slow inactivation (I(US)).
View Article and Find Full Text PDF