The design and optimization of a novel isoxazole S(1) linker for renin inhibitor is described herein. This effort culminated in the identification of compound 18, an orally bioavailable, sub-nanomolar renin inhibitor even in the presence of human plasma. When compound 18 was found to inhibit CYP3A4 in a time dependent manner, two strategies were pursued that successfully delivered equipotent compounds with minimal TDI potential.
View Article and Find Full Text PDFThe design and optimization of a novel series of renin inhibitor is described herein. Strategically, by committing the necessary resources to the development of synthetic sequences and scaffolds that were most amenable for late stage structural diversification, even as the focus of the SAR campaign moved from one end of the molecule to another, highly potent renin inhibitors could be rapidly identified and profiled.
View Article and Find Full Text PDFAn SAR campaign aimed at decreasing the overall lipophilicity of renin inhibitors such as 1 is described herein. It was found that replacement of the northern appendage in 1 with an N-methyl pyridone and subsequent re-optimization of the benzyl amide handle afforded compounds with in vitro and in vivo profiles suitable for further profiling. An unexpected CV toxicity in dogs observed with compound 20 led to the employment of a time and resource sparing rodent model for in vivo screening of key compounds.
View Article and Find Full Text PDFJ Renin Angiotensin Aldosterone Syst
September 2011
Introduction: The hypertensive double-transgenic (dTG) rat strain, expressing human renin and angiotensinogen, develops severe hypertension and organ damage and 50% of individuals die by 7 weeks of age. Here, we characterise a variation of this model in which animals present stable hypertension.
Materials And Methods: The effect of renin-angiotensin system blockers on blood pressure was determined with adult dTG rats treated with enalapril from 3 to 12 weeks of age.
Renin is the first enzyme in the renin-angiotensin-aldosterone system which is the principal regulator of blood pressure and hydroelectrolyte balance. Previous studies suggest that cathepsin B is the activator of the prorenin zymogen. Here, we show no difference in plasma renin activity, or mean arterial blood pressure between wild-type and cathepsin B knockout mice.
View Article and Find Full Text PDFThe discovery and SAR of a new series of substituted amino propanamide renin inhibitors are herein described. This work has led to the preparation of compounds with in vitro and in vivo profiles suitable for further development. Specifically, challenges pertaining to oral bioavailability, covalent binding and time-dependent CYP 3A4 inhibition were overcome thereby culminating in the identification of compound 50 as an optimized renin inhibitor with good efficacy in the hypertensive double-transgenic rat model.
View Article and Find Full Text PDFThe lysosomal cysteine protease cathepsin K is a target for osteoporosis therapy. The aryl-piperazine-containing cathepsin K inhibitor CRA-013783/L-006235 (1) displays greater than 4000-fold selectivity against the lysosomal/endosomal antitargets cathepsin B, L, and S. However, 1 and other aryl-piperazine-containing analogues, including balicatib (10), are approximately 10-100-fold more potent in cell-based enzyme occupancy assays than against each purified enzyme.
View Article and Find Full Text PDFApoptotic markers consist of either caspase substrate cleavage products or phenotypic changes that manifest themselves as a consequence of caspase-mediated substrate cleavage. We have shown recently that pharmacological inhibitors of caspase activity prevent the appearance of two such apoptotic manifestations, alphaII-spectrin cleavage and DNA fragmentation, but that blockade of the latter required a significantly higher concentration of inhibitor. We investigated this phenomenon through the use of a novel radiolabeled caspase inhibitor, [(125)I]M808, which acts as a caspase active site probe.
View Article and Find Full Text PDF1. Caspases, key enzymes in the apoptosis pathway, have been detected in the brain of HD patients and in animal models of the disease. In the present study, we investigated the neuroprotective properties of a new, reversible, caspase-3-specific inhibitor, M826 (3-([(2S)-2-[5-tert-butyl-3-[[(4-methyl-1,2,5-oxadiazol-3-yl)methyl]amino]-2-oxopyrazin-1(2H)-yl]butanoyl]amino)-5-[hexyl(methyl)amino]-4-oxopentanoic acid), in a rat malonate model of HD.
View Article and Find Full Text PDFA rodent model of sepsis was used to establish the relationship between caspase inhibition and inhibition of apoptotic cell death in vivo. In this model, thymocyte cell death was blocked by Bcl-2 transgene, indicating that apoptosis was predominantly dependent on the mitochondrial pathway that culminates in caspase-3 activation. Caspase inhibitors, including the selective caspase-3 inhibitor M867, were able to block apoptotic manifestations both in vitro and in vivo but with strikingly different efficacy for different cell death markers.
View Article and Find Full Text PDFInterleukin-1beta (IL-1beta) participates in neuroinflammation and neurodegeneration. Its mechanisms of action are not fully understood, but appear to involve complex interactions between neurons and glia. The objective of this study was to determine the involvement of endogenous IL-1beta in inflammatory responses to LPS in cultured mouse glial cells, and compare this to the effects of exogenous IL-1beta.
View Article and Find Full Text PDFSeveral lines of evidence suggest that interleukin-1 (IL-1) acts directly on the central nervous system, probably within the hypothalamus, causing effects such as fever, activation of the immune response and sickness behaviour. IL-1 has also been shown to be involved in the aetiology of several neuronal diseases, including neurodegeneration, stroke and Alzheimer's disease. However, the question as to whether the full-length type I IL-1 receptor (IL-1RI) is expressed in the human hypothalamus has yet to be addressed.
View Article and Find Full Text PDFInterleukin-1 beta (IL-1beta) has been proposed as a mediator of several forms of brain damage, including that induced by excitotoxins. In vitro studies suggest that glial cells are the effector cells of IL-1beta-mediated neurodegeneration. We have investigated the expression of IL-1beta protein by glial cells in vivo in response to NMDA receptor-mediated excitotoxicity in the rat parietal cortex and striatum.
View Article and Find Full Text PDFThe cytokine interleukin-1 (IL-1) has been implicated in the exacerbation of ischemic damage in the brains of rodents. This study has ascertained the cellular localization and chronologic and topographic distribution of pro/mature interleukin-1beta (IL-1beta) protein 0.5, 1, 2, 6, 24, and 48 hours after ischemia by subjecting rats to permanent unilateral occlusion of the middle cerebral artery.
View Article and Find Full Text PDFNumerous cytokines and their receptors have been identified in the brain, where they act as mediators of host defence responses and have direct effects on neuronal and glial function. Experimental tools for studying cytokine actions, their source and control of synthesis in the brain, actions and mechanisms of action will be reviewed here. In particular, the cytokines interleukin-1, interleukin-6, and tumour necrosis factor-alpha have been implicated in the central control of responses to systemic disease and injury and activation of fever, neuroendocrine, immune, and behavioural responses.
View Article and Find Full Text PDFIncreased expression of the cytokine interleukin-1 (IL-1) has been observed in rodent and human brain after injury, and IL-1 has been implicated in ischaemic and excitotoxic brain damage in the rat. These data suggest that neurodegeneration caused by brain injury may be mediated by local IL-1 production and action. This hypothesis was tested by studying the effects of central injection of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) on brain damage (assessed histologically, H and E stain) induced by fluid percussion trauma in the rat.
View Article and Find Full Text PDFCytokines were first characterized as high-molecular weight modulators of the immune response. However they also play an important role in the CNS. Thus, some cytokines could influence the synaptic transmission or modulate the neuronal and glial growth during brain development or after brain injury.
View Article and Find Full Text PDFThe neuroprotective potential of eliprodil (SL 82.0715), an N-methyl-D-aspartate (NMDA) receptor antagonist acting at the polyamine modulatory site, in brain trauma was examined in a rat model of lateral fluid-percussion brain injury. The volume of the lesion was assessed histologically by measuring, at 7 days post-injury, the area of brain damage at 10 coronal planes.
View Article and Find Full Text PDFIn the present study we have characterized the time-course of the histopathological and biochemical alterations resulting from mechanical brain injury caused by lateral fluid percussion centered over the parietal cortex in the rat. The injury device used was an HPLC pump coupled to a solenoid valve which delivered a constant and short lasting (10 ms) impact pressure (1.6 atm).
View Article and Find Full Text PDFThe effects of fluid percussion trauma on brain interleukin (IL)-6, IL-1 and tumor necrosis factor-alpha (TNF-alpha) levels have been studied. In the cortex and hippocampus of control and sham-operated rats, the levels of these cytokines were very low (below 4 units/mg protein) and constant. IL-6 and IL-1 levels in the ipsilateral cortex increased rapidly following trauma to reach a maximum of 350 and 16 units/mg protein, respectively, 8 h after the lesion, remained elevated until 18 h and decreased thereafter to basal values.
View Article and Find Full Text PDFThe potential neuroprotective effects of IL-6 against the excitotoxic neuronal loss induced by N-methyl-D-aspartate (NMDA) have been studied. Infusion into the rat striatum of excitotoxic amounts (250 nmol) of NMDA resulted in a 45% decrease in striatal choline acetyl transferase activity (ChAT; a marker of cholinergic neurons) and glutamate decarboxylase (GAD, a marker of GABAergic neurons) at 2 days post-injection. Co-infusion of 10 U of IL-6 reduced the loss of ChAT activity to 21% but failed to prevent the loss of GAD activity.
View Article and Find Full Text PDFThe possible involvement of lymphokines in the glial reaction/proliferation that follows brain injury has been investigated by measuring the density of omega 3 (peripheral type benzodiazepine) binding sites associated to glial cells and macrophages after local injection of lymphokines in the rat cerebral cortex and striatum. omega 3 Site densities were measured either by quantitative autoradiography in brain sections or by conventional binding in membrane using [3H]PK 14105 or [3H]PK 11195 as ligands. Intracortical or intrastriatal infusion of interleukin-1 (10 and 20 units) caused a marked increase in the density of omega 3 sites (+83% and +80%, respectively, when compared to saline-infused animals) around the injection site at 7 days postinjection.
View Article and Find Full Text PDF