Neurons in the primary visual cortex (V1) are classically thought to encode spatial features of visual stimuli through simple population codes: each neuron exhibits a preferred orientation and preferred spatial frequency that are invariant to other aspects of the visual stimulus. Here, we show that this simple rule does not apply to the representation of major features of stimulus motion, including stimulus direction and temporal frequency (TF). We collected an extensive dataset of cat V1 responses to stimuli covarying in orientation, direction, spatial frequency, and TF to assess the extent of motion selectivity.
View Article and Find Full Text PDFSpatio-temporal activity patterns have been observed in a variety of brain areas in spontaneous activity, prior to or during action, or in response to stimuli. Biological mechanisms endowing neurons with the ability to distinguish between different sequences remain largely unknown. Learning sequences of spikes raises multiple challenges, such as maintaining in memory spike history and discriminating partially overlapping sequences.
View Article and Find Full Text PDFWe analyze a spatially extended version of a well-known model of forest-savanna dynamics, which presents as a system of nonlinear partial integro-differential equations, and study necessary conditions for pattern-forming bifurcations. Homogeneous solutions dominate the dynamics of the standard forest-savanna model, regardless of the length scales of the various spatial processes considered. However, several different pattern-forming scenarios are possible upon including spatial resource limitation, such as competition for water, soil nutrients, or herbivory effects.
View Article and Find Full Text PDFA variety of nonlinear models of biological systems generate complex chaotic behaviors that contrast with biological homeostasis, the observation that many biological systems prove remarkably robust in the face of changing external or internal conditions. Motivated by the subtle dynamics of cell activity in a crustacean central pattern generator (CPG), this paper proposes a refinement of the notion of chaos that reconciles homeostasis and chaos in systems with multiple timescales. We show that systems displaying relaxation cycles while going through chaotic attractors generate chaotic dynamics that are regular at macroscopic timescales and are, thus, consistent with physiological function.
View Article and Find Full Text PDFThe use of artificial intelligence (AI) to aid legal decision making has become prominent. This paper investigates the use of AI in a critical issue in employment law, the determination of a worker's status-employee vs. independent contractor-in two common law countries (the U.
View Article and Find Full Text PDFThe striatum mediates two learning modalities: goal-directed behavior in dorsomedial (DMS) and habits in dorsolateral (DLS) striata. The synaptic bases of these learnings are still elusive. Indeed, while ample research has described DLS plasticity, little remains known about DMS plasticity and its involvement in procedural learning.
View Article and Find Full Text PDFIn networks of nonlinear oscillators, symmetries place hard constraints on the system that can be exploited to predict universal dynamical features and steady states, providing a rare generic organizing principle for far-from-equilibrium systems. However, the robustness of this class of theories to symmetry-disrupting imperfections is untested in free-running (i.e.
View Article and Find Full Text PDFDevelopment of cortical regions with precise, sharp, and regular boundaries is essential for physiological function. However, little is known of the mechanisms ensuring these features. Here, we show that determination of the boundary between neocortex and medial entorhinal cortex (MEC), two abutting cortical regions generated from the same progenitor lineage, relies on COUP-TFI (chicken ovalbumin upstream promoter-transcription factor I), a patterning transcription factor with graded expression in cortical progenitors.
View Article and Find Full Text PDFNumerous studies have proposed that specific brain activity statistics provide evidence that the brain operates at a critical point, which could have implications for the brain's information processing capabilities. A recent paper reported that identical scalings and criticality signatures arise in a variety of different neural systems (neural cultures, cortical slices, anesthetized or awake brains, across both reptiles and mammals). The diversity of these states calls into question the claimed role of criticality in information processing.
View Article and Find Full Text PDFFast learning designates the behavioral and neuronal mechanisms underlying the acquisition of a long-term memory trace after a unique and brief experience. As such it is opposed to incremental, slower reinforcement or procedural learning requiring repetitive training. This learning process, found in most animal species, exists in a large spectrum of natural behaviors, such as one-shot associative, spatial, or perceptual learning, and is a core principle of human episodic memory.
View Article and Find Full Text PDFAnimals display extensive diversity in motifs adorning their coat, yet these patterns have reproducible orientation and periodicity within species or groups. Morphological variation has been traditionally used to dissect the genetic basis of evolutionary change, while pattern conservation and stability in both mathematical and organismal models has served to identify core developmental events. Two patterning theories, namely instruction and self-organisation, emerged from this work.
View Article and Find Full Text PDFDeep brain stimulation (DBS) of the subthalamic nucleus is a symptomatic treatment of Parkinson's disease but benefits only to a minority of patients due to stringent eligibility criteria. To investigate new targets for less invasive therapies, we aimed at elucidating key mechanisms supporting deep brain stimulation efficiency. Here, using in vivo electrophysiology, optogenetics, behavioral tasks and mathematical modeling, we found that subthalamic stimulation normalizes pathological hyperactivity of motor cortex pyramidal cells, while concurrently activating somatostatin and inhibiting parvalbumin interneurons.
View Article and Find Full Text PDFThe striatum integrates inputs from the cortex and thalamus, which display concomitant or sequential activity. The striatum assists in forming memory, with acquisition of the behavioral repertoire being associated with corticostriatal (CS) plasticity. The literature has mainly focused on that CS plasticity, and little remains known about thalamostriatal (TS) plasticity rules or CS and TS plasticity interactions.
View Article and Find Full Text PDFNervous system maturation occurs on multiple levels-synaptic, circuit, and network-at divergent timescales. For example, many synaptic properties mature gradually, whereas emergent network dynamics can change abruptly. Here we combine experimental and theoretical approaches to investigate a sudden transition in spontaneous and sensory evoked thalamocortical activity necessary for the development of vision.
View Article and Find Full Text PDFThe development of an organism involves the formation of patterns from initially homogeneous surfaces in a reproducible manner. Simulations of various theoretical models recapitulate final states of natural patterns, yet drawing testable hypotheses from those often remains difficult. Consequently, little is known about pattern-forming events.
View Article and Find Full Text PDFHebbian plasticity describes a basic mechanism for synaptic plasticity whereby synaptic weights evolve depending on the relative timing of paired activity of the pre- and postsynaptic neurons. Spike-timing-dependent plasticity (STDP) constitutes a central experimental and theoretical synaptic Hebbian learning rule. Various mechanisms, mostly calcium-based, account for the induction and maintenance of STDP.
View Article and Find Full Text PDFSimple mathematical models can exhibit rich and complex behaviors. Prototypical examples of these drawn from biology and other disciplines have provided insights that extend well beyond the situations that inspired them. Here, we explore a set of simple, yet realistic, models for savanna-forest vegetation dynamics based on minimal ecological assumptions.
View Article and Find Full Text PDFNeuronal activation triggers local changes in blood flow and hemoglobin oxygenation. These hemodynamic signals can be recorded through functional magnetic resonance imaging or intrinsic optical imaging, and allows inferring neural activity in response to stimuli. These techniques are widely used to uncover functional brain architectures.
View Article and Find Full Text PDFCritical states are sometimes identified experimentally through power-law statistics or universal scaling functions. We show here that such features naturally emerge from networks in self-sustained irregular regimes away from criticality. In these regimes, statistical physics theory of large interacting systems predict a regime where the nodes have independent and identically distributed dynamics.
View Article and Find Full Text PDFEmotional disorders and psychological flourishing are the result of complex interactions between positive and negative affects that depend on external events and the subject's internal representations. Based on psychological data, we mathematically model the dynamical balance between positive and negative affects as a function of the response to external positive and negative events. This modeling allows the investigation of the relative impact of two leading forms of therapy on affect balance.
View Article and Find Full Text PDFLoss of neurons in the neocortex is generally thought to result in a final reduction of cerebral volume. Yet, little is known on how the developing cerebral cortex copes with death of early-born neurons. Here, we tackled this issue by taking advantage of a transgenic mouse model in which, from early embryonic stages to mid-corticogenesis, abundant apoptosis is induced in the postmitotic compartment.
View Article and Find Full Text PDFIn the early visual cortex, information is processed within functional maps whose layouts are thought to underlie visual perception. However, the precise organization of these functional maps as well as their interrelationships remain unsettled. Here, we show that spatial frequency representation in cat early visual cortex exhibits singularities around which the map organizes like an electric dipole potential.
View Article and Find Full Text PDFThe layout of sensory brain areas is thought to subtend perception. The principles shaping these architectures and their role in information processing are still poorly understood. We investigate mathematically and computationally the representation of orientation and spatial frequency in cat primary visual cortex.
View Article and Find Full Text PDF