Am J Physiol Endocrinol Metab
July 2006
Vasopressin V(1b) receptor is specifically expressed in the pituitary and mediates adrenocorticotropin release, thereby regulating stress responses via its corticotropin releasing factor-like action. In the present study we examined catecholamine release in response to two types of stress in mice lacking the V(1b) receptor gene (V(1b)R(-/-) mice) vs. wild-type mice.
View Article and Find Full Text PDFThis study determined the in vitro functional profile of 1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-5-methoxy-3,4-dihydro-2-quinolinone monomethanesulfonate (OPC-14523) at rat and human serotonin (5-HT) 5-HT1A receptors and binding affinity of OPC-14523 at human frontocortical 5-HT1A receptors. OPC-14523 (1 microM) increased guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS) binding to 5-HT1A receptor-containing regions of rat brain tissue sections (approximately 53% of the effect of 1 microM (+)8-hydroxy-2-(di-n-propylamino)tetralin ((+)8-OH-DPAT) that were blocked by the selective 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY-100635). OPC-14523 also behaved as a partial agonist in its stimulation of [35S]GTPgammaS binding to membranes from rat hippocampus (pEC50=7.
View Article and Find Full Text PDFAripiprazole is the first clinically approved atypical antipsychotic agent having dopamine D2 receptor partial agonist activities. To evaluate aripiprazole's agonist and antagonist properties, we established a Chinese hamster ovary cell line expressing high and low densities of the long and short isoforms of human dopamine D2 receptors, then compared its properties with 7-{3-[4-(2,3-dimethylphenyl)piperazinyl]propoxy}-2(1H)-quinolinone (OPC-4392), S(-)-3-(3-hydroxyphenyl)-N-n-propylpiperidine ((-)-3-PPP), and terguride (other partial agonists) using forskolin-stimulated cAMP accumulation as an index. In cells expressing high receptor densities, all partial agonists predominantly behaved as agonists.
View Article and Find Full Text PDFAripiprazole is a novel antipsychotic with a unique mechanism of action, which differs from currently marketed typical and atypical antipsychotics. Aripiprazole has been shown to be a partial agonist at the D(2) family of dopamine (DA) receptors in biochemical and pharmacological studies. To demonstrate aripiprazole's action as a partial D(2) agonist in pituitary cells at the molecular level, we retrovirally transduced the short (D(2S)) and the long (D(2L)) form of the human DA D(2) receptor gene into a rat pituitary cell line, GH4C1.
View Article and Find Full Text PDFIn vivo microdialysis was used to monitor the effects of oral aripiprazole and olanzapine on basal extracellular concentrations of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindole acetic acid (5-HIAA) in the medial prefrontal cortex and striatum of conscious, freely moving rats. Acute aripiprazole administration did not affect dopamine output, but produced moderate increases in DOPAC and HVA concentrations, in medial prefrontal cortex or striatum of drug-naïve rats. Similarly, aripiprazole did not affect dopamine output but produced moderate elevations in DOPAC and HVA concentrations in the striatum of chronic aripiprazole-pretreated rats.
View Article and Find Full Text PDFCatalepsy and changes in striatal and limbic dopamine metabolism were investigated in mice after oral administration of aripiprazole, haloperidol, and risperidone. Catalepsy duration decreased with chronic (21 day) aripiprazole compared with acute (single dose) treatment across a wide dose range, whereas catalepsy duration persisted with chronic haloperidol treatment. At the time of maximal catalepsy, acute aripiprazole did not alter neostriatal dopamine metabolite/dopamine ratios or homovanillic acid (HVA) levels, and produced small increases in dihydroxyphenylacetic acid (DOPAC).
View Article and Find Full Text PDFAripiprazole is the first next-generation atypical antipsychotic with a mechanism of action that differs from currently marketed typical and atypical antipsychotics. Aripiprazole displays properties of an agonist and antagonist in animal models of dopaminergic hypoactivity and hyperactivity, respectively. This study examined the interactions of aripiprazole with a single population of human D2 receptors to clarify further its pharmacologic properties.
View Article and Find Full Text PDFAripiprazole, 7-[4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butyloxy]-3,4-dihydro-2(1H)-quinolinone, a novel antipsychotic with partial agonist activity at dopamine D2 receptors, bound with high affinity to recombinant human 5-HT(1A) receptors (h5-HT(1A)) in Chinese hamster ovary cell membranes and displayed potent, partial agonism at 5-HT(1A) receptors in a guanosine-5'-O-(3-[(35)S]thio)-triphosphate ([(35)S]GTP gamma S)-binding assay that was blocked completely by a selective 5-HT(1A) receptor antagonist. An interaction with 5-HT(1A) receptors may contribute to the overall efficacy of aripiprazole against symptoms of schizophrenia, including anxiety, depression, cognitive and negative symptoms, and to its favorable side-effect profile. Combined with previous studies demonstrating the potent partial agonism of aripiprazole at dopamine D2 receptors, this study suggests aripiprazole is the first dopamine-serotonin system stabilizer.
View Article and Find Full Text PDFSigma and 5-HT(1A) receptor stimulation can increase acetylcholine (ACh) release in the brain. Because ACh release facilitates learning and memory, we evaluated the degree to which OPC-14523 (1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-5-methoxy-3,4-dihydro-2[1H]-quinolinone monomethane sulfonate), a novel sigma and 5-HT(1A) receptor agonist, can augment ACh release and improve learning impairments in rats due to cholinergic- or age-related deficits. Single oral administration of OPC-14523 improved scopolamine-induced learning impairments in the passive-avoidance task and memory impairment in the Morris water maze.
View Article and Find Full Text PDFThe antidepressant-like activity of a novel compound, OPC-14523, was investigated in comparison with the conventional antidepressants, fluoxetine and imipramine. OPC-14523 bound with nanomolar affinities to sigma receptors (IC(50)=47-56 nM), the 5-HT(1A) receptor (IC(50)=2.3 nM), and the 5-HT transporter (IC(50)=80 nM).
View Article and Find Full Text PDFTo develop a novel antidepressant drug with central nervous system-stimulating activity, we prepared a series of 1-[omega-(4-substituted phenyl-1-piperazinyl)alkyl]-3, 4-dihydro-2(1H)-quinolinone derivatives and examined their activities by their effects at 30 and 100 mg/kg po on the sleeping time of mice anesthetized with halothane and on the time required for recovery from coma induced in mice by cerebral concussion. We examined their binding affinities for sigma receptors by evaluating their ability to inhibit [(3)H]-1,3-di(o-tolyl)guanidine ([(3)H]DTG) binding to the rat whole brain membrane in comparison with three putative sigma receptor agonists: 1,3-di(o-tolyl)guanidine (DTG, 66), (+)-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-2, 6-methano-3-benzazecin-8-ol (SKF10,047, 67), and (+)-1,2,3,4,5, 6-hexahydro-6,11-dimethyl-3-(3-methyl-2-butenyl)-2, 6-methano-3-benzazecin-8-ol (pentazocine, 68). Among the series of derivatives, 1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-3, 4-dihydro-5-methoxy-2(1H)-quinolinone hydrochloride (34b) and its mesylate (34c), at a dose of 30 mg/kg po, reduced the sleeping time and the time for recovery from coma and they inhibited [(3)H]DTG binding for sigma receptors.
View Article and Find Full Text PDFTo develop a novel antipsychotic agent which is an agonist of dopamine (DA) autoreceptors and an antagonist of postsynaptic DA receptors, a series of 7-[4-[4-(substituted phenyl)-1-piperazinyl]butoxy]-3,4-dihydro-2 (1H)-quinolinones was synthesized and their dual activities were examined. The postsynaptic DA receptor antagonistic activities of the compounds were evaluated by their ability to inhibit stereotypy induced by apomorphine in mice, and the autoreceptor agonist activities were determined by their effects on the gamma-butyrolactone (GBL)-induced increase in L-dihydroxyphenylalanine (DOPA) synthesis in the mouse brain. Many compounds inhibited the stereotypic behavior, and several compounds reversed the GBL-induced increase in the DOPA synthesis.
View Article and Find Full Text PDFIt is known that beta-adrenoceptor antagonists are effective in the treatment of akathisia, one of the extrapyramidal side effects that occur during neuroleptic treatment. Neuroleptic-induced catalepsy, a model of neuroleptic-induced extrapyramidal side effects, was considered suitable as a model for predicting neuroleptic-induced akathisia in humans, although neuroleptic-induced catalepsy was not considered a specific test for neuroleptic-induced akathisia. Therefore, the effects of carteolol, a beta-adrenoceptor antagonist, on haloperidol-induced catalepsy in rats were behaviorally studied and compared with those of propranolol and biperiden, a muscarinic receptor antagonist.
View Article and Find Full Text PDFThe effects of 7-(4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2 (1H)- quinolinone (OPC-14597), a derivative of the dopamine (DA) autoreceptor agonist 7-(3-[4-(2,3-dimethylphenyl)piperazinyl]propoxy)-2(1H)-quinolinone (OPC-4392), on DA receptors were biochemically and behaviorally studied and compared with those of OPC-4392. Both OPC-14597 and OPC-4392 inhibited reserpine- and gamma-butyrolactone (GBL)-induced increase in tyrosine hydroxylase activity in the mouse and rat brain. The effects of OPC-14597 were comparable to those of OPC-4392 and were completely antagonized by haloperidol.
View Article and Find Full Text PDFIn a continuous search for a novel cerebroprotective drug with a central nervous system (CNS) stimulating activity, a series of 1-(acylamino)-7-hydroxyindan derivatives has been synthesized and tested for its dual activities. The cerebroprotective activities of the compounds in this series were evaluated in terms of their effect on the survival of mice in hypoxic conditions (210 mmHg), and their CNS stimulating activities were examined by evaluating their promotional effects on the recovery from coma induced by cerebral concussion in mice. Several compounds prolonged the survival of mice in the hypoxic conditions at a dose of 30 mg/kg po.
View Article and Find Full Text PDFTo develop a novel cerebroprotective agent with central nervous system (CNS) stimulating activity, a series of 1-amino-7-hydroxyindan derivatives was synthesized, and their effects on the survival time of mice under hypoxic conditions were tested. CNS-stimulating activity was also evaluated by examining the promotional effect on the recovery from cerebral concussion induced coma in mice. Several compounds prolonged the survival time of mice in hypoxic conditions at a dose of 30 mg/kg (sc or ip) and 100 mg/kg (po).
View Article and Find Full Text PDFNihon Sanka Fujinka Gakkai Zasshi
January 1981
Carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), placental alkaline phosphatase (ALP4), human chorionic gonadotropin (HCG), human chorionic gonadotropin-beta-subunit (beta-HCG) and human placental lactogen (HPL) were simultaneously and serially determined in the sera of the patients with ovarian carcinoma. The incidence of patients whose tests for carcinoembryonic proteins were positive was as follows: CEA, 29/55 (56.4%); AFP, 7/58 (13.
View Article and Find Full Text PDF