Introduction And Objective: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the nasal cavity, penetrates the nasal epithelial cells through the interaction of its spike protein with the host cell receptor angiotensin-converting enzyme 2 (ACE2) and then triggers a cytokine storm. We aimed to assess the biocompatibility of fullerenol nanoparticles C(OH) and ectoine, and to document their effect on the protection of primary human nasal epithelial cells (HNEpCs) against the effects of interaction with the fragment of virus - spike protein. This preliminary research is the first step towards the construction of a intranasal medical device with a protective, mechanical function against SARS-CoV-2 similar to that of personal protective equipment (eg masks).
View Article and Find Full Text PDFThis article is focused on the comparison of the reliability of the results obtained by image analysis (newly proposed evaluation method) with well-known methods of evaluation of long-term corrosion resistance of glass fibers in an alkaline environment (pH > 12). The developed method is based on the analysis of scanning electron microscopy images (diameter and structures on the fiber surface). An experiment (52 weeks) was performed to evaluate two types of glass fibers: anticorrosive glass fibers (ARGFs) and E-glass fibers (EGFs).
View Article and Find Full Text PDFThis paper presents temperature-dependent properties and fire resistance of geopolymer foams made of ground basalt fibers, aluminum foaming agents, and potassium-activated metakaolin-based geopolymers. Temperature-dependent properties of basalt-reinforced geopolymer foams (BGFs) were investigated by a series of measurements, including apparent density, water absorption, mass loss, drying shrinkage, compressive and flexural strengths, XRD, and SEM. Results showed that the apparent density and drying shrinkage of the BGFs increase with increasing the treated temperature from 400 to 1200 °C.
View Article and Find Full Text PDFReduced friction and wear of materials after the use of the carbon nanomaterials including nanodiamonds (NDs) have been confirmed by several studies in material engineering. Mechanical cleaning of the tooth surface by brush bristles should leave as little tissue roughened as possible. Higher surface roughness increases the tissue's wear and encourages the redeposition of the bacteria and the colouring agents present in the diet.
View Article and Find Full Text PDF