Publications by authors named "Totan Kumar Ghosh"

The escalating global temperatures associated with climate change are detrimental to plant growth and development, leading to significant reductions in crop yields worldwide. Our research demonstrates that salicylic acid (SA), a phytohormone known for its growth-promoting properties, is crucial in enhancing heat tolerance in cotton (). This enhancement is achieved through modifications in various biochemical, physiological, and growth parameters.

View Article and Find Full Text PDF
Article Synopsis
  • The phytohormone abscisic acid (ABA) is crucial for processes such as stomata closure, osmostress resilience, and dormancy in plants, with Group B3 Raf protein kinases (B3-Rafs) acting as positive regulators of ABA signaling in both mosses and angiosperms.
  • Research on liverworts revealed that they possess three B3-Raf paralogs, showing structural variations that contribute to the ABA response, such as growth inhibition and desiccation tolerance.
  • Interestingly, specific B3-Raf paralogs govern gametophyte dormancy, indicating not only the preservation of B3-Raf functions in liverworts but also their early evolutionary diversification in land plants.
View Article and Find Full Text PDF

Potassium (K) is an integral part of plant nutrition, playing essential roles in plant growth and development. Despite its abundance in soils, the limitedly available form of K ion (K) for plant uptake is a critical factor for agricultural production. Plants have evolved complex transport systems to maintain appropriate K levels in tissues under changing environmental conditions.

View Article and Find Full Text PDF

Soil salinity, a major environmental concern, significantly reduces plant growth and production all around the world. Finding solutions to reduce the salinity impacts on plants is critical for global food security. In recent years, the priming of plants with organic chemicals has shown to be a viable approach for the alleviation of salinity effects in plants.

View Article and Find Full Text PDF

Liverwort is considered as the key species for addressing a myriad of questions in plant biology. Exploration of drought tolerance mechanism(s) in this group of land plants offers a platform to identify the early adaptive mechanisms involved in drought tolerance. The current study aimed at elucidating the drought acclimation mechanisms in liverwort's model .

View Article and Find Full Text PDF

Plant response to drought and hyperosmosis is mediated by the phytohormone abscisic acid (ABA), a sesquiterpene compound widely distributed in various embryophyte groups. Exogenous ABA as well as hyperosmosis activates the sucrose nonfermenting 1 (SNF1)-related protein kinase2 (SnRK2), which plays a central role in cellular responses against drought and dehydration, although the details of the activation mechanism are not understood. Analysis of a mutant of the moss Physcomitrella patens with reduced ABA sensitivity and reduced hyperosmosis tolerance revealed that a protein kinase designated "ARK" (for "ABA and abiotic stress-responsive Raf-like kinase") plays an essential role in the activation of SnRK2.

View Article and Find Full Text PDF

Plants acclimate to environmental stress signals such as cold, drought and hypersalinity, and provoke internal protective mechanisms. Abscisic acid (ABA), a carotenoid-derived phytohormone, which increases in response to the stress signals above, has been suggested to play a key role in the acclimation process in angiosperms, but the role of ABA in basal land plants such as mosses, including its biosynthetic pathways, has not been clarified. Targeted gene disruption of PpABA1, encoding zeaxanthin epoxidase in the moss Physcomitrella patens was conducted to determine the role of endogenous ABA in acclimation processes in mosses.

View Article and Find Full Text PDF