Nanoparticles (NPs) are considered as versatile tools in various fields including medicine, electronics, and environmental science. Understanding the structural aspects of surface modifiers in nanoparticles that govern their cellular uptake is crucial for optimizing their efficacy and minimizing potential cytotoxicity. The cellular uptake is influenced by multiple factors, namely, size, shape, and surface charge of NPs, as well as their surface functionalization.
View Article and Find Full Text PDFThis study demonstrated the correlation of molecular structures of Peroxisome proliferator-activated receptor gamma (PPARγ) modulators and their biological activities. Bayesian classification, and recursive partitioning (RP) studies have been applied to a dataset of 323 PPARγ modulators with diverse scaffolds. The results provide a deep insight into the important sub-structural features modulating PPARγ.
View Article and Find Full Text PDFBackground: Histone deacetylase 9 (HDAC9) is an important member of the class IIa family of histone deacetylases. It is well established that over-expression of HDAC9 causes various types of cancers including gastric cancer, breast cancer, ovarian cancer, liver cancer, lung cancer, lymphoblastic leukaemia, etc. The important role of HDAC9 is also recognized in the development of bone, cardiac muscles, and innate immunity.
View Article and Find Full Text PDFHDAC9 is a histone deacetylase enzyme belonging to the class IIa of HDACs which catalyses histone deacetylation. HDAC9 inhibit cell proliferation by repairing DNA, arresting the cell cycle, inducing apoptosis, and altering genetic expression. HDAC9 plays a significant part in human physiological system and are involved in various type of diseases like cancer, diabetes, atherosclerosis and CVD, autoimmune response, inflammatory disease, osteoporosis and liver fibrosis.
View Article and Find Full Text PDF