Publications by authors named "Tosin Victor Adegoke"

Mycotoxin contamination can cause severe health issues for both humans and animals. This study examined the potential of enzymes derived from Acinetobacter nosocomialis Y1 to simultaneously degrade aflatoxin B (AFB) and zearalenone (ZEN), which could have significant implications in reducing mycotoxin contamination. Two enzymes, Porin and Peroxiredoxin, were identified with molecular weights of 27.

View Article and Find Full Text PDF

Contamination of foods and feeds with Ochratoxin A (OTA) is a global problem, and its detoxification is challenging. In this study, IS-6 culture isolate supernatant degraded 1.5 g/mL OTA by 89% after 24 h of incubation at 37 °C, whereas viable cells and intra-cell extracts were less effective.

View Article and Find Full Text PDF

Mycotoxins, the most researched biological toxins, can contaminate food and feed, resulting in severe health implications for humans and animals. Physical, chemical, and biological techniques are used to mitigate mycotoxin contamination. The biotransformation method using whole microbial cells or isolated enzymes is the best choice to mitigate mycotoxins.

View Article and Find Full Text PDF

Trace elements contamination is mainly originated from industrial emission, sewage irrigation and pesticides, and poses a threat to the environment and human health. This study analyzed the trace element pollutants in peanut-soil systems, the enrichment and translocation capacity of peanut to trace elements, and the potential risk of trace elements to environment and human health. The results indicated that Cd and Ni in peanut kernels exceeded the standard limits in 2019, and the exceeding rate were 9% and 31%, respectively.

View Article and Find Full Text PDF

Seed germination and coleoptile elongation in response to flooding stress is an important trait for the direct seeding of rice. However, the genes regulating this process and the underlying mechanisms are little understood. In this study, bZIP72 was identified as a positive regulator of seed germination under submergence.

View Article and Find Full Text PDF

Lateral branches such as shoot and panicle are determining factors and target traits for rice (Oryza sativa L.) yield improvement. Cytokinin promotes rice lateral branching; however, the mechanism underlying the fine-tuning of cytokinin homeostasis in rice branching remains largely unknown.

View Article and Find Full Text PDF

Grain size and weight are the key traits determining rice quality and yield and are mainly controlled by quantitative trait loci (QTL). In this study, one minor QTL that was previously mapped in the marker interval of JD1009-JD1019 using the Huanghuazhan/Jizi1560 (HHZ/JZ1560) recombinant inbred line (RIL) population, qTGW1-2, was validated to regulate grain size and weight across four rice-growing seasons using twenty-one near isogenic line (NIL)-F populations. The twenty-one populations were in two types of genetic background that were derived from the same parents HHZ and JZ1560.

View Article and Find Full Text PDF

The () gene, encoding the granule-bound starch synthase (GBSS), is responsible for amylose biosynthesis and plays a crucial role in defining eating and cooking quality. The waxy locus controls both the non-waxy and waxy rice phenotypes. Rice starch can be altered into various forms by either reducing or increasing the amylose content, depending on consumer preference and region.

View Article and Find Full Text PDF