The crystal structures of GeSb(6)Te(10) and GeBi(6)Te(10) were scrutinized using an X-ray powder diffraction method, which revealed that these compounds crystallize in trigonally distorted cubic close-packed structures with a 51-layer period (R3m). Each layer consists of a triangular atomic net; Te atoms occupy their own specific layers, whereas Ge, Sb and Bi atoms are located in the other layers. In these pseudobinary compounds, random atomic occupations of Ge and Sb/Bi are observed and the layers form two kinds of elemental structural blocks by their successive stacking along the c axis.
View Article and Find Full Text PDFGe(2)Bi(2)Te(5) in the GeTe-Bi(2)Te(3) pseudobinary system has two single-crystalline phases: a metastable phase with an NaCl-type structure and a stable phase with a nine-layer trigonal structure. In the metastable phase, the structure consists, in the hexagonal notation, of infinitely alternating stacks of Te and Ge/Bi layers at equal intervals along the c axis. On the other hand, in the stable phase those two layers are stacked alternately nine times to form an NaCl block.
View Article and Find Full Text PDFGeTe(1-x)-Sb2Te3(x) sputtered amorphous film was crystallized into a simple NaCl-type structure through instantaneous laser irradiation over a wide composition range from x = 0 to at least 2/3. When the ratio of Sb2Te3 increases, a vacancy is generated at every Na site for two Sb atoms. The fraction of vacancies, v(x), changes according to x/(1 + 2x), and the cubic root unit cell volume varies with a strong correlation to v(x).
View Article and Find Full Text PDF